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SECTION 1 

INTRODUCTION 

1.1 Purpose of study 

In  recent years, w i t h  accelerated developments i n  aerospace technology, 

the needs fo r  accurate and rapid methods fo r  flignt-vehicle-safety analysis 

and for  s t ructural  design have been keenly f e l t .  I n  design, one must account 

f o r  fne interaction of the s t ructural  system witn various types of environ- 

mental dynamic conditions such as landing, maneuvering, gust ,  b l a s t ,  etc. Also 

of in t e re s t  is the interaction of a high-velocity fragment with the structure 

which is intended t o  contain and/or t o  def lect  the fragment; uncontained frag- 

ments wliicn may be generated from tne f a i lu re  of nigh-speed rotating turbojet 

a i r c r a f t  engine pa r t s  could damage equipment and threaten passenger safety [11*. 

For e f f i c i en t  minimum weight (optimum) ciesign, it is often necessary t o  

take f u l l  advantage of the load-carrying capacity of available =ater ia ls  by 

pernit t iny the material t o  proceed w e l l  i n t o  the p l a s t i c  range; tnus, non- 

l i nea r  material behavior must be accounted fo r  i n  some design analyses. 

frequently, it is necessary i n  predicting s t ructural  responses t o  consider geo- 

metric nonlinearit ies,  specif ical ly ,  when the deflections a re  large enou~h. 

Multilayer structures involving composite materials which have high strength and 

low density properties a re  becoming useful i n  aerospace structures as w e l l  a s  i n  

other applications. The complex and nonlinear character of such s t ructural  

problenis, however, makes it almost impossible for  one t o  carry out a conventional 

analyt ical  solution i n  closed form. 

obtaining meaningful predictions f o r  t h i s  kind of complex problem, numerical 

analysis procedures have been developeci. 

Also, 

In order t o  provide a pract ical  means of 

The general numerical methods of s t ruc tu ra l  analysis may be divided con- 

veniently i n t o  t w o  categories. 

governing algebraic and/or d i f f e ren t i a l  equations" is based on mathematically 

The f i r s t  category, "numerical solution of the 

* 
Numbers i n  brackets I 1 r e fe r  t o  references ci ted a t  the  end of the text. 
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approximating and solving the governing d i f f e ren t i a l  equations e i ther  by 

finite-differences [ 2 ,  3, for  example] or  by forward integration 14, 5 ,  6, for  

example]. The second category is the "finite-element method" which is most 

systematically based on variational principles. 

tinuum is represented by a finite number of regions which are connected a t  a 

f i n i t e  number of nodes along interelement boundaries; the geometric and the 

material properties of the continuum may be fa i thfu l ly  retained i n  the idealized 

s t r u c t u r a l  assembly. 

analysis has undergone intensive development and has proved t o  be a very effec- 

t ive  and powerful method for  analyzing cer ta in  classes of problems, especially 

for  a continuum or s t ructure  w i t h  complicated boundary conditions, geometric 

shape, and material properties. The re la t ive  ease and ve r sa t i l i t y  with which 

the f i n i t e  element (FE) method can be applied to complex s t ruc tura l  shapes i n  

comparison with the finite-difference (FD) method is often regarded as an hi- 

portant a t t r i bu te  of the finite-element method. Accordingly, the assumed-dis- 

placement version of the finite-element method of analysis for  large-deflection 

elast ic-plast ic  t ransient  responses of simple structures is developed i n  the 

present study*. Various aspects of the present development a re  given i n  

Sections 2 through 5; for  convenience, a review of the pertinent l i t e r a tu re  on 

th i s  topic is given i n  Subsection 3.1. 

+ 

In  t h i s  method, the so l id  con- 

I n  the past  several  years, the finite-element method of 

Discussed i n  Section 6 is a t imely problem to which the present method 

of analysis has been applied; t h i s  concerns rotor-blade fragment impingement 

upon (a) a complete c i rcular  s t ruc tura l  containment r ing c r  (b) a segment of a 

circular  s t r u c t u r a l  r ing which is supported i n  one of several ways. 

for  (a) is a prediction of the motion and s t r u c t u r a l  deformation of the contain- 

ment ring, as w e l l  as the motion of the (idealized-as-rigid i n  the present 

first-approximation analysis) rotor  blade; suitably accurate engineering pre- 

dictions of s t r a ins  are desired. Similar data i n  category (b) are  sought, but 

there is greater i n t e r e s t  i n  observing the "diverted trajectory" of the rotor  

Sought 

+ 
This method is applicable t o  problems i n  one space variable such as beams and 

shells of revolution. 

Principal emphasis has been devoted t o  employing the 
type of finite-element model; however, other types of 
such as equilibrium-stress models, hybrid models, and 
could a l so  be used for  t h i s  type of problem. 

* 
assumed-displacement 
finite-element models 
mixed models [7] 

2 



blade -- the idea of i n t e re s t  being to d ive r t  the  blade to a new "harmless 

direction". 

problem and on al ternate  o r  supplementary methods fo r  its analysis is given 

i n  Subsection 6.1. 

ment containment/deflection problem, and the application of a method of analy- 

sis developed i n  this study to analyze some simple cases of fragnent impinge- 

ment upon containment and/or deflection structures.  

Further background on the rotor  fragment containment/deflection 

Section 6 is devoted t o  discussing the rotor burst frag- 

1.2 Synopsis of Investigation 

The present study is devoted t o  developing and validating a method t o  

analyze the large deflection t ransient  responses of simple structures,  in- 

c1udir.g e las t ic-plast ic  material behavior. 

element apprbach which is based upon the  Principle of Virtual Work and 

D ' A l e m b e r t ' s  Principle (or equivalently, Hamilton's Principle) is used t o  formu- 

late t h e  governing equations. 

a d i r ec t  timewise numerical integration scheme. 

(see Section 5) by applying it t o  a sequence of t ransient  response examples 

having r e l i ab le  independent analytical  o r  experimental r e su l t s ,  for a def ini t ive 

comparison. This developent  is then applied t o  the rotor fragment containment/ 

deflection problem. 

u t i l i z e s  momentum and energy considerations of the  system is employed t o  pre- 

d i c t  the collision-induced veloci t ies  imparted "instantaneously" t o  the 

affected ring segment and t o  the fragment. 

Tne assumed-displacement f in i t e -  

The result ing equations of motion are solved by 

This method has been evaluated 

A simplified fragment s t ructure  interaction m d e l  which 

Sections 2 through 5 pertain t o  the  development and evaluation of the 

present finite-element method fo r  predicting both small-deflection and large- 

deflection elastic and/or e las t ic-plast ic  t ransient  responses of simple struc- 

tures. 

induced deformations of a continuum are presented i n  Section 2 i n  general three- 

dimensional tensor form. Section 3 is devoted to the development of an over- 

a l l  method of solution, following a review of the pertinent literature dealing 

with this c lass  of problems; the spatial finite-element approximation together 

w i t h  the temporal finite-difference approximation are used, 

the equations of motion f o r  the finite-element treatment a re  derived from a 

variational statement consisting of the Principle of V i r t u a l  Work and 

The general equations which govern large elast ic-plast ic  dynamically- 

Also i n  Section 3,  



D'Alembert's Principle; the resulting equations are developed in two forms: 

(a) the "conventional form" (see q. 3.l), and (b) an "improved" unconventional 

form (see Eq. 3.2). The new improved formulation (b) is shown (in Section 5) 
to be more efficient and economical for computing the large-deflection elastic- 

plastic transient responses of simple structures than is the conventional 

finite-element formulation (a). In Section 4, the general formulation dis- 

cussed in Section 3 is developed in detail for an arbitrarily curved beam 

having (a) zero and (b) non-zero transverse shear deformation. Finally, 

Section 5 contains an assessment of this method of analysis by means of a 

sequence of problems for beam and ring example structures which are subjected 

to transient mechanical loading or to initial impulsive loading; comparisons 

of ttle present predictions are made with reliable experimental data and/or 

independent predictions (finite-difference and/or analytical). 

In Section 6, the problem of burst-rotor fragments interacting with 

either a complete or a partial containment/deflection structural ring is dis- 

cussed. Energy and manentum consilerations are employed to predict the collision- 

induced velocities which are imparted to the colliding fragment and to the af- 

fected ring segment (the associated analysis method is termed the collision- 

imparted velocity methad, CIVM). This collision analysis is combined with the 

earlier-developed FE analysis to permit one to predict the resulting large de- 

formation responses of contaiment/deflection rings. Comparisons with limited 

experimental data are also given. 

The entire study is summarized and pertinent conclusions are cirawn in 

Section 7. 

Also, three appendices are included. Appendix A contains the description 

of the mechanical sublayer nodel for strain-hardening, strain-rate sensitive 

material behavior. 

analysis for the assumed displacement finite-element formulations are liste8. 

Appendix C contains, for purposes of illustration, the formulation of the 

equations of motion based on a mixed finite-element method (1) by assuming a 

displacement field which is continuous over the entire solid and (2)  by using 

an assumed-stress field for the individual element; however, no evaluation of 

this d e l  has been made in this report. 

In Appendix B, all of the matrices used in the present 
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SECTION 2 

GENERAL FORMULATION 

2.1 Introduction 

I n  t h i s  section, the equations which govern the large deflection dynamic 

and/or static responses of a continuum axe presented, 

rate-dependent material behavior is considered, but not viscoelast ic i ty .  

equations are derived i n  general tensor form for  convenience and generali ty 

and, therefore, any coordinate system can be employed fo r  defining the three- 

dimensional space containing the continuum. These equations are later speci- 

a l ized t o  treat simpler classes of problems. 

Elastic-plastic s t ra in-  

The 

The terminology "large deflections" as used here indicates, fo r  example, 

that the lateral deflections of beams and/or pla tes  are large compared with 

the thickness of the s t ructure;  the change i n  geometry is significant.  Through 

the strain-displacement re la t ions and the equilibrium equations, the geometric 

nonl inear i t ies  are introduced in to  the theory. 

t h a t  i n  the present analysis, the s t r a ins  (extension and shear) are t reated as 

being s m a l l  compared with unity. 

It  should be noted, however, 

I n  a f in i te -s t ra in  analysis,  there  are various possible types of defini-  

t ions of s t resses  and s t r a ins  (Refs. 8 ,  9, 10) based on e i ther  the predeformed 

or  post-deformed configurations of the continuum, and the dis t inct ions between 

them cannot be neglected; whereas, they may be indistinguishable i n  small- 
Strain theory. 

p l a s t i c  s t r a i n  are uncertain (not w e l l  es tabl ished) ,  primarily because of the 

lack of adequate experimental data. However, f in i te -s t ra in  predictions have 

been of increasing in t e re s t  recently,  f o r  instance, i n  connection with ex- 

plosive forming of s t ruc tura l  shapes. 

problem are much desired,  and fur ther  research is required. 

The const i tut ive relat ions for  cases involving f i n i t e  elastic- 

The analysis tools  f o r  t h i s  class of 

In  t h i s  study, the indicia1 notation and summation convention associated 

w i t h  vector and tensor analysis are used. 
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2.2 Governing Equations 

2.2.1 The Strain-Displacement Relations 

Consider the continuum i n  its process of deformation from an i n i t i a l l y  

undeformed state which ex is t s  a t  tinre to (Fig. $1). Each material point i n  the 

3-dimensional space can be ident i f ied by a general curvil inear coordinate sys- 

tem (termed Lagrangian) 5’ and an i n e r t i a l  Cartesian rectangular coordinate 

system YJ fixed i n  space. 

i n  the i n i t i a l  undeformed s t a t e  be ;(EJ, t ) and the posit ion vector of the 

same material point i n  the deformed* s t a t e  a t  any ins tan t  of time t be 

R(Ej ,  t) . 

L e t  the posit ion vector of a given material point 

0 

- 

Base vectors for  the coordinate system 6’ may be defined i n  both the un- 
deformed s t a t e  and the deformed state of the continuum, respectively, as 

The metric tensor g 

tensor G 
i j  

associated with the undeformed state and the m e t r i c  i j  
associated w i t h  the deformed state are  defined, respectively, by: 

m The contravariant metric tensors g and G”’ are defined , respectively, through 

where 6“ is the Kronecker de l ta  defined as  
P 

I i f  n = p  

0 i f  n f p  
s; = { 

The respective contravariant base vectors are defined by 

Quantities associated with the defomed s t a t e  are represented by capi ta l  

Index quant i t ies  such as i, j, p, m, n, k, e tc . , ’ take  on values 1, 2, and 3. 

letters, and lower case l e t t e r s  denote the i n i t i a l  undeformed s ta te .  ** 
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The deformed posit ion vector and the undeformed posit ion vector 
- - I  are related by the  displacement vector V (5 , t) as follows: 

(2.61 

I 

The displacement vector v may be expressed 

spect t o  the base vector system of the undeforned 

- - i -  
v = v %,A - v, 2" 

i n  component form with re- 

s t a t e  a t  time t as 
0 

The  Lagrangian s t r a i n  tensor associated with the deformation process 

is defined by 

and can be writ ten i n  terms of the displacement 

where v denotes covariant d i f fe ren t ia t ion  of 
i , j  

components as 

'k,j 1 (2.9) 

j v .  with respect to 5 using the 
a 

metric tensor of the undefozmed state and is defined as 

(2.10) 

k where {i jl0 is the Chris toffel  symbol of the second kind associated with the 

undeformed state (subscript  "o") and is defined by 

(2.11) 

Differentiating Eqs. 2.7 and 2.9 w i t h  respect t o  time t which is a monotonically 
k 

increasing quantity,  and using the f a c t  t ha t  yi and { i  j l0  are not functions of 

time (fixed quant i t ies  with respect to the i n i t i a l  state), one may obtain the 

following expression fo r  the displacement rate: 

(2.12) 

Hence, the s t r a i n  rate yij  which is  related t o  the displacement and displace- 

ment r a t e  is given by 
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where ( '1  denotes p a r t i a l  d i f fe ren t ia t ion  with respect to  time t. 

I n  the problem of in te res t ,  expressions are required for the s t r a in  incre- 

ment Ayij and the displccement increment AT which occur when the continuum i s  

deformed incrementally from one deformed state a t  t h e  t to  another deformed 

s t a t e  a t  t i m e  t2, where t2 = t 

cussed l a t e r  for  transient-response behavior of a continuum). 
2- step A t  between these two ins tan ts  is small, the displacement (denoted by v )  

a t  time t can be constructed by employing the Taylor series expansion involv- 

inq the f i n i t e  increment A t  i n  time*: 

1 
+ A t  (the solution procedure is to  be dis- 1 

If the time- 

2 

or  i n  component form 

(2.14) 

and correspondingly, the Lagrangian s t r a i n  'yij, a t  time t may be expressed 

as 
2 

I n  Eq. 2.16 t e r m s  of t he  or*r of ( A t ) 3  and higher are neglected because of 

the smallness of the time-step A t .  

It perhaps should be mentioned that the displacement vector can be ex- 

pressed al ternat ively i n  terms of components w i t h  respect t o  the deformed base 

vectors a t  time t a s  

(2.17) 

and the corresponding s t r a i n  tensor (termed Almansi, see Ref. 11) has the form 

* 
Note tha t  prescr ipts ,  both sub and super, are used here t o  ident i fy  quant i t ies  

associated.with par t icular  instants  i n  time. 
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where V 

metric tensor of the deformed state and is defined as 

indicates also covariant different ia t ion but w i t h  respect to the 
mln 

where 

(2.19) 

(2.20) 

k Since as w e l l  as { 1 are functions of time, the  displacement vector m mn 
r a t e  and the  s t r a i n  r a t e  expressed i n  terms of components w i t h  respect t o  the 

deformed base vector system w i l l  not take a s  simple a form as Eqs. 2.12 and 

2.13 i n  which the components are expressed with respect to  the undeformed base 

vector system. Hence, the strain-displacement re la t ions represented by Eq. 2.9 

are chosen fo r  use. 

2.2.2 Descriptions of Stresses and Forces on a 

Deformed Continuum Element 

Consider the geometry and the forces acting upon an arbi t rary parallele- 

piped element on its path of deformation (see Figs. 1 and 2).  I n  the init ial  

undeformed state, it has the volume dV bounded by surfaces d?i (having edges 

dE%n and dEPGp, where m # n # p) .  After deformation, this Lagrangian paral- 

lelepiped has a volume dV and is bounded by surfacer; dAm (having edges 

dtnzn, d t q p ) .  Thus, 

0 om 

d = 0 dG 'd5 '  , d V =G d g ' d < d 5 3  

(2.21) 

where g and G a r e  the  determinants of g and Gij , respectively. 

I n  the  following, convenient descriptions for stresses and forces acting 

upon the deformed parallelepiped element are t o  be discussed as a prelude for  
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t he i r  use i n  the Principle of V i r t u a l  work from which the equations of motion 

and boundary conditions w i l l  be obtained. 

L e t  zi denote ;le stress vector_ associated w i + h  the ci surface (at 
0 

<i = const) in the deformed state measured per u n i t  in i t ia l  undeformed area. 

The Kirchhoff stress tensor Si’ is defined by (Fig. 2): 

(2.22) 

The stress resul tant  Ti exerted on the deformed surfaces dAi by the neighboring 

element of the continuum may be expressed i n  the form 

(2.23) 

i Alternatively, l e t  2 be the stress vector associated with the E surface 

i n  the deformed body but measured per unit  deformed area; thus, the Eulerian 

s t r e s s  tensor, T , is defined by (Fig. 2 ) :  
i j  

i Then the stress resul tant ,  T , may be expressed as 

(2.24) 

(2.25) 
- 

Likewise ,  the body force,  F ( iner t ia ,  gravi ta t ional ,  magnetic, etc.) per uni t  

mass acting on the deformed body may be described i n  component fom ei ther  w i t h  

respect to the  undeformed base vector of the coordinate system < i as 

(2.26) 

or with respect t o  the deformed base vectors of the coordinate system 6’ as 

(2.27) 

. .  . .  
It should be noted that the  s t r e s s  tensors 5’’ and T’’ are re lated to  

each other by 
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stress tensors. Thus 

2.2.3 Conservation of Mass 

The conservation of m a s s  may be expressed as (Ref. 11) to be 

or using Eq. 2.21, one may w r i t e  

(2.29) 

I 

(2.30) 

(2.31) 

where the integrals  extend over the same part ic les .  The quantity p is the 

density i n  the or iginal  configuration and p is the current density of the de- 

formed body. Since t h i s  re la t ion  must hold for  a l l  bodies, one has 

0 

(2.32) 

This gives the re la t ion  of densi t ies  i n  d i f fe ren t  configurations of the con- 

tinuum t o  tha t  of the or iginal  undeformed continuum. 

2.2.4 

In  this subsection, the Principle of Virtual Work fo r  the  continuum 

The Principle of Virtual Work 

w i l l  be presented and is employed t o  derive the equations of equilibrium and 

the boundary conditions. 

Consider the deformed continuum i n  equilibrium, under the action of 

body forces,  externally applied surface t ract ions,  and w i t h  a rb i t ra ry  deforma- 

t ion  conditions consistent with the prescribed geometric boundary conditions. 

L e t  t h i s  equilibrium configuration be subjected t o  an arbi t rary and independent 

set of inf ini tes imal  v i r tua l  displacements without violating the prescribed 

geometric boundary conditions. 

v i r t u a l  work done by the external forces (body forces and surface t ract ions)  

The Principle of Virtual Work states tha t  the 
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is equal t o  the v i r tua l  work of the internal  stresses. By ut i l iz ing  the unde- 
i formed m e t r i c  of the coordinate system 6 , the 

be stated mathematically as  

where 

i j  where S is the Kirchhoff stress tensor 

yij is  the Lagrangian s t r a i n  tensor 

Principle of 

var ia t ion of 
the internal  

var ia t ion of 

V i r t u a l  Work may 

(2.33) 

the work of 
forces (2.33a) 

thg work of:  (1) 
the body force F per uni t  mass 
and (2)  of the expm’ially applied 
surface t ract ion T , measured per 

u n i t  area of the undeformed state 
0 

(2.33b) 

d i s  the usual symbol denoting the variation of a function - 

67 is the var ia t ion of the displacement vector and may be 

expressed i n  t e r m s  of components with respect to  the 

undeformed base vectors as 

pend upon displacement, 

6;Ii = 0 )  (2.34) 

In  Eqs. 2.33a and 2.33b, V is the en t i re  undeformed rrolume of the continuum 

which is bounded by the andeformed surface A The boundary surfaGe A. can 

be dividsd in to  two par ts :  (a) prescribed surface t ract ion boundary A and 

(b) prescribed displacement boundary Aov. 

Lagrangian s t r a i n  tensor,  dyij associated with the displacement variation 6V 
about the deformed equilibrium configuration may be expressed as 

0 

0‘ 

ou 
Then the variation i n  the - 

1 2  



(2.35) 

where ( ) s igni f ies  covariant different ia t ion with respect to the undeformed 

metric of the coordinate system 6 . i 

Substi tuting Eq. 2.35 in to  Eq. 2.33a one has 

(2.36) 

. .  V6 

where the symmetry of S” has been used t o  combine terms. Upon integration by 

par t s  and using Green’s theorem t o  convert volume integrals  t o  surface integrals ,  

Eq. 2-36 becomes 

(2.37) 
- 

where n is the component of the uni t  normal vector,  n t o  the undeformed 

boundary surface Ao, which is defined as 
oj 0’ 

- - a  n o  = not  1 (2.38) 

Substi tuting Eqs. 2.26 and 2.34 i n to  Eq. 2.33b r e su l t s  i n  

8 W=/j /pofksvk N o  +fl Aou Tok 8 %  d A 0  
(2.39) 

k V O  

where T is the component of i n  the direct ion of the undeformed base vector. 
0 0 
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Thus, 

(2.40) 

Substituting Eqs. 2.37 and 2.39 into the  Principle of Virtual Work one obtains 

(2.41) 

Since the variation 6v 

ing equation of equilibrium a t  any point i n  the continuum: 

i s  independent and arbitrary, t h i s  leads t o  the follow- k 

(2.42) 

which i s  a bi l inear  function i n  Si’ and VI. 

Also, on the boundary AW where the surface t ract ion is prescribed, the 

following boundary condition relat ion m u s t  be sat isf ied:  

(2.43) 

On the portion of the boundary A where the displacement is prescribed, the ov 
relat ion 

should be sat isf ied.  

It should be noted that a l l  pe r t i  ent quant i t ies  appearing i 

(2.44) 

6~ and &W 

of Eq. 2.33 are defined consistently with respect t o  the ( i n i t i a l )  undeformed 

m e t r i c  of the coordinate system E . A l s o ,  the integrations are extended over 

the or iginal  (known) configuration of the continuum. This is usually called a 
“Lagrangian description”. 

i 

Alternatively, by using t h e  relat ions 
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the  Principle of V i r t u a l  Work, Eq. 2.33, can be converted in to  the following 

equivalent form with reference to the present deformed state (designated as  an 

Eulerian* description): 

It  is worthy of special  mention that t h i s  basic var ia t ional  formulation, 

the Principle of Virtual Work, holds independent of the material s t ress-s t ra in  

re la t ion  and the existence of potent ia l  functions of the external forces. 

it embodies the equation of equilibrium of the continurn (overall  and/or a t  any 

generic point) .  The var ia t ional  technique has proved t o  be a very powerful and 

easi ly  applied method for analyzing sol id  continuum problems. 

study, the Principle of V i r t u a l  Work, together with the concept of D'Alembert's 

Principle is employed for  analyzing the large-deflection elast ic-plast ic  

t ransient  responses of s t ructures  which may be subjected to an i n i t i a l  impulse 

followed by a time-dependent externally-applied forcing function and geometric 

constraints.  

Also, 

In  the present 

The D ' A l e f a b e r t  Principle states tha t  the dynamic system can be considered 

to be i n  equilibrium under the externally-applied forces i f  the i n e r t i a l  forces 

are taken in to  account. The Principle of Virtual work, Eq. 2.33, now w i t h  the 

v i r tua l  work done by the i n e r t i a l  forces specified expl ic i t ly  may be written 

as 

where 

(2.47) 

(2.47a) 

v, % 
= variat ion of the work done by the  ine r t i a  forces 

* 
It  should be noted tha t ,  i n  f lu id  mechanics, the Eulerian description is con- 

cerned with the state of motion through a fixed gr id  or a fixed volume i n  space, 
i n  contrast  w i t h  the  above solid-m chanics terminology. 

15 



- -  .. .. 
I n  Eq. 2.47a, ii = 7 since R = r + v' and 

undeformed body. 

are  taken in to  account within 6 ~ .  

is the posit ion vector of the 

It is assumed tha t  a l l  body forces other than ine r t i a  forces 

Let  Eq. 2.47 be integrated with respect t o  time between two time l imi ts  

t and t t o  represent the conventional statement of Hamilton's Principle. mus 1 2 

(2.48) 

Integrating the last t e r m  which appears under the integral  sign of Eq. 2.43 by 

V O  

1'1 

t, 'ti v, 
(2.49) 

Since i f  the conditions of the dynamic system are prescribed (or are  otherwise 

known) a t  the two t h e  l imi ts  t and t and are not subjected t o  variation, 

one has 
1 2 

6 T ( t = t , )  = o  , 6 T( t =t,,= 0 
(2 .50)  

where 

* .  K = ii( i po 7 .  v d L', = the k i n e t i c  energy of the body (as 
usually seen i n  Hamilton's princi- 
ple) - V* 

Substi tuting Fq. 2.51 i n to  Eq. 2.48, one has the Principle of Vir tua l  

Work of the dynamic system: 
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t 

(2.52) 

It perhaps should be pointed out that either the Lagrangian form o r  the 

Eulerian form of Eq. 2.52 could be used i n  the exact or  i n  an approximate 

analysis of s t ruc tura l  responses. For convenient reference, these t w o  forms 

are writ ten out  i n  f u l l  as follows: 

-(Lagrangian form) (2.52a) 

(Eulerian form) (2.52b) 

It is seen tha t  the Eulerian description is based on the current deformed 

volume, area, and metric tensor; these quant i t ies  are functions of the dis- 

placement vector,  v, which is to  be determined as a function of time. On the 

other hand, the Lagrangian description is based on the or iginal  (known) volume, 

area, and metric tensors and, accordingly, is more convenient. 

- 

Because of the complexity i n  cer ta in  s t ruc tura l  problems, numerical 

methods are of i n t e re s t  and include, for  example, f i n i t e  difference,  f i n i t e  

element, forward integration, etc. In  this study, however, the finite-element 

approach is used and is based on the var ia t ional  formulation given by Eq. 2.52a. 

Since, i n  t h i s  Lagrangian point of view, the s t r a i n  would take on its simple 
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form and the mass matrix (as discussed later) would be constant throughout the 

calculation of the t ransient  response (and hence need not be re-evaluated a t  
each stage i n  the incremental time analysis as would be required by the Eulerian 

description) , the use of the Lagrangian description would appear to r e su l t  i n  
some computational advantages and time saving i n  solving the problem over the 

use of the Eulerian description. 

It  perhaps should be noted tha t  the Principle of Virtual Work, Eq. 2.52, 

can be applied e i ther  t o  conservative or t o  non-conservative dynamic systems. 

For conservative dynmkc systems ( tha t  is, i f  the potent ia l  of the internal  

stress and externally-applied force ex is t ) ,  as w e l l  as for dynamic systems w i t h  

both conservative and non-conservative forces, another very useful energy 

principle called Hamilton's Principle could a l so  be used; this principle can 

be derived from the Principle of V i r t u a l  Work as employed here (i.e.8 Eq. 2.4% 

or Eq. 2.52). 

Finally,  it should be noted tha t  one need not use the t h e  integrated 

form of the Principle of Virtual Work (within which is imbedded R ' A l e m b e r t ' s  

Principle) i f  one wishes simply to obtain the correct: equations of motion and 

the correct  boundary conditions -- the  use of Eqs. 2.47 and 2.47a which hold 

a t  each instant  i n  time w i l l  suf f ice  f o r  t h i s  purpose. However, i f  one 

wishes t o  formulate a finite-element analysis i n  both space and t h e  (see 

Ref. 121 ,  the " t i m e  integrated" var ia t ional  statement represented by Eq. 2.48 

or  @. 2.52a, for example, is very useful. 

2.2.5 Thermodynamic Equa t ions 

In  t h i s  subsection, the thermodynamic equations which govern the large 

deflection (static or  dynamic response) of the continuum i n  the presence of 

thermal and mechanical e f fec ts  are presented s ince it is desired tha t  the 

present general formulation include thermal e f f ec t s  for future  use, although 

the i l l u s t r a t i v e  example problems discussed herein do not include them. 

thermodynamic equations w i l l  be used fo r  the derivation of the material e l a s t i c  

and elast ic-plast ic  consti tutive relat ions presented i n  the next subsection. 

These 

Consider t h a t  the continuum i n i t i a l l y  i n  the undeformed state with 

volume Vo and bounded by surface A. is subjected t o  mechanical and/or thermal 
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loading. After deformation, its volume becomes V and is bounded by surface A. 

The f i r s t  l a w  of thermodynamics o r  the l a w  of conservation of energy 

may be writ ten as: 

A t  any Generic Point of the Continuum: 

s Q , i  
i +poB = foe hi 

where B is the rate of heat input per un i t  mass - 
Q is the rate of the heat f lux vector across the body 

surface measured per uni t  undeformed area and 
i - j- 

Q = Q gj * Qjg 
A is the portion of the surface over which the heat 

f lux proceeds 

- -  - ,ij 

oh 

19 is the internal  energy per u n i t  mass 

Po, F, To, Ad, n , , and y are defined as previously stated. 
0 ij 

The second l a w  of thenaodynamics (or the increase of entropy 

principle) may be writ ten as: 

For the  Continuum as a Whole: 

A t  any Generic Point of the Continuum 

(2.54) 

(2.55) 

(2 .56)  
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where S is the entropy per un i t  mass 
T is the absolute temperature 

Let  the Helmoltz function H be defined as 

tf = L I - T S  (2.57) 

Then, substi tuting f o r  U of E q .  2.57 i n t o  Eq. 2.54, r e s u l t s  i n  

(2.58) 

It is  convenient t o  eliminate p B from ms. 2.56 and 2.58 to  obtain the in- 
0 

(2.59) 

Alternatively, the thermodynamic equations can be expressed i n  a form 

which refers t o  the deformed s t a t e  of the continuum. 

These thermodynamic equations, i f  desired, can be employed t o  deduce 

the  equation of equilibrium, the continuity equation, and the boundary condi- 

tions. 

It should be noted t h a t  a l l  of the equations derived so f a r  are exact fo r  

either f i n i t e  s t r a i n  or infinitesimal s t ra in ;  that is, no r e s t r i c t ion  on the 

magnitude of s t r a i n  has been made. 

2.3 Constitutive Relations 

This subsection is concerned w i t h  the elastic and elastic-plastic materi- 
a l  behavior of the continuum; also, thermal effects and strain-rate e f f ec t s  

w i l l  be discussed. 

The e l a s t i c i t y  theory (l inear or nonlinear) postulates t h a t  a unique 

relat ion ex i s t s  between the instantaneous states of stress and s t ra in .  When 

the material is deformed i n t o  the p l a s t i c  range, a unique relat ion does not 

hold i n  general between stress and s t r a in ,  but a functional re la t ion exists: 

the s t r a i n  depends not only on the  current state of stress but a l so  on the  

history of loading. 

A t  finite s t r a i n  and/or elevated temperatures, the  coupling influences 

occurring through thermal ef fec ts ,  e l a s t i c  deformation, and p l a s t i c  flow may be 

20 
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signif icant  i n  some cases, and an i n i t i a l l y  isotropic  and homogeneous material 
may exhibi t  appreciably anisotropic and nonuniform behavior. The coupling in- 

fluences include fo r  example: (1) the elastic modulii of the material w i l l  

change as functions of temperature and continued p l a s t i c  s t ra ining;  (2) heat, 

which is generated from the diss ipat ion of p l a s t i c  work can induce the redis- 

tr ibut ion of temperature; a lso,  (3) the Bauschinger effect and hysteresis loop 

are observed which are believed t o  be due to d i f f e ren t i a l  hardening of the 

variously-oriented crystals .  

the limited available experimental data make it very d i f f i c u l t  for  one to carry 

out the f i n i t e  s t r a i n  and/or high temperature e last ic-plast ic  analysis w i t h  con- 

f idence . 

These complex coupling functional re la t ions,  and 

In c h s s i c a l  thermal-elastic-plastic theory (Re*. 13, 14) which is re- 

s t r i c t ed  t o  infinitesimal s t r a in ,  considerable simplification is attained by 

decoupling the e f f ec t  of thermal e l a s t i c i ty ,  mechanical e l a s t i c  deformation, 

and mechanical p l a s t i c  flow. 

in to  e l a s t i c  (thermodynamically reversible) s t r a in ,  and p l a s t i c  (thermodynami- 

ca l ly  i r revers ible)  s t ra in .  The elastic s t r a i n  can fur ther  be decomposed in to  

thermal and mechanical parts.  

as  the t o t a l  s t r a in ,  but is not expressible i n  terms of the displacements. Only 

the total s t r a i n  can be related to the displacements. The e l a s t i c  s t r a in  is 

related t o  the stress through a linear-function relat ion,  and the thermal- 

e l a s t i c  s t r a i n  is t reated as an initial (or a prescribed) s t ra in .  The e l a s t i c  

modulus and heat capacity are considered t o  be invariant under p l a s t i c  flow; 

that is, the inf luence of p l a s t i c  flow on the thermal-elastic character is t ics  

is neglected. Only very recently,  some pertinent work has been extended t o  

f i n i t e  s t r a i n  (Refs. 15, 16). However, these theories do not completely 

agree w i t h  each other,  and fur ther  research is required. 

The t o t a l  s t r a i n  is assumed t o  be decomposed 

Each component has the same invariant properties 

I n  order to make the present study self-contained, the thermoelastic 

const i tut ive re la t ion  is  presented i n  Subsection 2.3.1. 

p las t i c  material behavior is discussed i n  Subsection 2.3.2. Subsection 2.3.3 

is concerned with the strain-rate  effect .  

on the  thermodynamic equations and follow those of Refs. 14 and 15. 

Thermal-elastic- 

The general derivations are based 
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2.3-1 Themaelastic Material Behavior 

Consider an e l a s t i c  continuum i n i t i a l l y  i n  a reference state w i t h  neither 

stress nor s t r a in ,  and of uniform absolute temperature, To. 

then subjected to a terqperature dis t r ibut ion T(c’,t) as w e l l  as body forces and 

surface t ract ions which may vary both spa t ia l ly  and temporally. 

assumed that the Helmholtz function H, entropy S, heat f lux Q 

are functions of s t r a i n  y 

(Ref. 15). Taus, 

This continuum is 

iJw le t  it be . .  
ami stress 3’’ k 

temperature T, d o r  temperature gradient T 
i j ’  tk 

unexe 

Tnen the tileniloctynaE~ic equation, E q .  2.59, becomes 

At: a given s t a t e  of ykR and T ,  the quant i t ies  y 

t r a r i l y .  Hence, it may be concluded tha t  

and T can be chosen arbi- Kll 

I f  the Helmholtz function, H ,  is specified (for example an terms of 

ykL and T ) ,  tne general thermal-elastic re la t ion may be derived from Ea_. 2 . 6 2 .  

For i n f i n i t e s h a l  s t r a in ,  the e l a s t i c  re la t ion  between stress and s t r a in  

niay be assumed t o  be l inear  and is known as Hmke’s l a w .  Thus, the Helmholtz 

function Ii may be expressed as a quadratic function of ykll (cubic and nigher 

22 



order terms are neglected): 

Y 

i j kk  i j  w n e r e  E , E2 , E3 are functions of T and 

Then, from Eq. 2.62 one may obtain 

(2.63) 

(2.63a) 

(2.64) 

Let t he  tnermal s t r a i n  be denoted by yT * since it is required tha t  S i j  = 0 

wiien yij = Y:~ , one iias 
i j '  

Aj i jk - f  T 
E, = -E,  ykl (2.65) 

and Eq. 2.64 becomes 

(2.66) 

Equation 2.GG gives the l inear  t h e m e l a s t i c  s t ress-s t ra in  relation. The 

thermal s t ra in  is treated as an " i n i t i a l  s t ra in"  or a prescribeci s t r a i n  which 

produces no stress. 

thermally, one may choose 

When the material is isotropic both e l a s t i ca l ly  and 

(2.68) 

where 1.1, 

between the thermal s t r a i n  and temperature is assumed to be 

are temperature-dependent Lame' constants. Further , i f  the relation 

d $  = d ( T ) d T  (2.69) 

it f o l l o w s  t h a t  

$ = fd(T1 d 7  
(2.69a) ' l o  
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where o is the temperature-dependent thermal expansion coefficient.  Then, for 

an isotropic and homogeneous material, the  l i nea r  thermoelastic stress-strain 

relation can be writ ten i n  the form 

i wnere v is Poisson's r a t io ,  E is  Young's modulus, and y is defined t o  be 
j 

(2.70a) 

It should be noted t h a t  the  coupling between thermoelasticity and heat 

conduction is neglected i n  the above equations. 

2.3.2 Thennoelastic-Plastic Material Behavior 

There are two types of common p l a s t i c i t y  theories,  termed "flow" and 

"deformation". 

t i c i t y ,  there ex i s t s  a one-to-one correspondence between stress and s t ra in .  

The flow theory of p l a s t i c i ty  states t h a t  there  is a functional re la t ion be- 

tween the incremental stress and the incremental s t ra in .  Only for  propor- 

t ional loading wnere the stress ratio remains constant, and f o r  a cer ta in  

rest r ic ted range of loading paths other than proportional loading (Ref. 18) 

(through tne assumption of the possibi l i ty  of singularity i n  the  yield surface) 

does the deformation theory agree with the f l o w  theory. 

the capabili ty t o  analyze general loading paths including loading, unloading, 

and cyclic loading, the "flow-type'' theory w i l l  be incorporated in to  the  present 

analysis. 

The deformation theory of p l a s t i c i ty  assumes tha t ,  as i n  elas- 

In  order t o  include 

The behavior of a general e las t ic-plast ic  material can be characterized 

by the following two ingredients. F i r s t ,  assume the existence of a boundary 

(yielding surface) i n  stress space which defines the elastic domain. Within 

the boundary the continuum deforms elast ical ly .  

onset of p l a s t i c  flow ( i r revers ib le  deformation i n  a thermodynamic sense) is 

possible and no meaning i s  associated with the region t h a t  is beyond the  bound- 

ary. Second, one employs a flow ru le  which describes the behavior of the ma- 

ter ia l  a f t e r  yielding has s ta r ted ;  it gives the relat ion of p l a s t i c  flow 

(s t ra in  increments) to the stress (or stress increment) and the loading history. 

Only a t  the boundary, the 
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Another basic assumption i n  the theory of an elast ic-plast ic  continuum 

is the introduction of a p l a s t i c  s t r a i n  tensor. 

f j ,  is assumed t o  have the same invariance properties as does the Lagrangian 

s t r a i n  tensor,  yi j .  The quantity 9. is re lated to y 

The p la s t i c  s t r a i n  tensor, 

by an e l a s t i c  s t r a in  1 3  i j  
i n  the form (Ref. 15) : e 

e 
(2.71) 

'P tensor x.i = x. ' y;.. 1 1 
e 
i j  N o  kinematic meaning is given to y 

fined by Eq. 2.8 is related t o  displacement by Q. 2.9. 

and f j ,  but only the i r  sum, yij as de- 

The yield surface, 4, is assumed to be expressible i n  terms of cer ta in  

variables and may be expressed as 

(2.72) 

wnere K is a hardening parameter which depends on the s t r a i n  history.  

ent ia t ing Eg. 2 - 1 2  w i t h  respect t o  t i m e  gives 

Uiffer- 

If the conditions (a) i 1. 0 and p = 0 or (b) 9 < 0 are sa t i s f ied ,  the s t a t e  

change can only be elastic (reversible) ,  any p l a s t i c  deformation (which may 

have been incurred ea r l i e r )  remains unchanged. Thus, 

o r  (elastic defomation) (2.74) 

If it is postulated t h a t  the p l a s t i c  s t r a i n  rate Cj is l inear ly  related to  
;ij 

loading, the following l inear  re la t ion  may ne chosen as a reasonable approxima- 

t ion: 

and anil with the consideration tha t  p.  is zero f o r  a neutral  change of 
13 
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when 

(2.75) 

w h e r e  Dij is H symmetric function of .P, T,  and 

but not of kRand i. This assumption, which is 

the previous s t r a in  his tory,  

suggested by Ref .  14, is 

based on the consideration tha t  i n  a c rys ta l  grain,  when the  stress state is 

such tha t  the resolved shears along cer ta in  s l i p  direct ion reach the critical 

value, the plast ic-s t ra in  increment occurs. H e n c e ,  as a statistical average 

over a l l  grains,  a def in i te  macroscopic stress is  needed. 

only determines the magnitude of the plast ic-s t ra in  increment. Further, the 

(thermodynamic) Helmholtz function H, entropy S, and heat f lux Qk, may be 

assumed to  be functions of ye kR, y&, and T (Ref. 15). Thus, 

The stress-increment 

(2.76) 

Then, from the thermodynamic equation, Eq. 2.59, one may deduce that  

(2.77) 

I f  the functions @, I) and H are chosen, Eqs. 2.74 and 2.75 w i l l  per- i j '  
n i t  the determination of the p l a s t i c  s t r a i n  increment corresponding to  the  
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stress increment and temperature increment, and Eq. 2.77 predicts the re la t ion  

between elastic s t r a i n  components and the stresses. 

no res t r ic t ion  is made on the magnitude of the s t r a i n  and the symmetry of 

material properties i n  the above equations. 

t ion  tha t  the t o t a l  s t r a i n  can be l inear ly  decomposed in to  elastic and p l a s t i c  

components and the  postulate t ha t  p l a s t i c  s t r a i n  rate is  l inear ly  re lated t o  

stress rate and/or temperature rate requires careful  scrutiny, as claimed by 

Ref. 16, because of the non-Euclidean character is t ic  of the intermediate 

stress-free state associated with the p l a s t i c  flow. However, fo r  infinitesimal 

s t r a in ,  these assumptions const i tute  a sat isfactory approximation, since the 

deformation behavior exhibited by most engineering materials i n  infinitesimal 

s t r a i n  is tha t  the i r revers ible  p l a s t i c  flow causes no volume change and the 

reversible e l a s t i c  s t r a i n  is small. 

functions @ and D i j  

It  should be noted that 

But, f o r  f i n i t e  s t r a i n  the assump- 

The specif ic  considerations upon which the 

are chosen w i l l  be discussed i n  the following. 

In  simple tension and/or compression tests of most  engineering materials, 

the uniaxial s t ress-s t ra in  re la t ion  indicates the existence of a yield stress 

(elastic l i m i t ) ,  Uo, beyond which p l a s t i c  (permanent) deformation takes place. 

However, under multiaxial  stress (and st rain)  the behavior is much more compli- 

cated. 

dict ion of the onset of p l a s t i c  flow and the re la t ion  among p la s t i c  flow, stress, 

and stress history. Among them is the Mises-Hencky yield c r i te r ion  and its as- 

sociated flow ru le  which usually f i t s  experimental observations bet ter  than the  

Tresca cr i te r ion ,  for  instance, f o r  polycrystall ine metals and yet  is m a t h e m a -  

t i c a l l y  simple. 

present analysis. 

Various yield c r i t e r i a  and flow rules have been proposed fo r  the pre- 

The Mises-Hencky ru l e s  w i l l  be discussed and adopted i n  the 

The Mises-Hencky yield c r i te r ion  may be physically interpreted as 

“yielding begins whenever the d is tor t ion  energy equals the dis tor t ion  energy 

a t  yield i n  simple tension”. Thus, hydrostatic pressure, for  an isotropic  

material, (tension or compression) does not a f f ec t  the yielding, p l a s t i c  flow, 

and resul tant  hardening. 

hydrostatic component of the applied stress. 

p l a s t i c  (or i r reversible)  change i n  volume. Thus, 

Stated otherwise, no p l a s t i c  work is done by the 

This implies that  there  is no 
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(2.78) 

where  iSp is the p h e r i c a l  ~ l a s t i c  strain-rate tensor.. For an i n i t i a l l y  

isotropic m a t e r i a l ,  the Mises-Hencky yield function can be written i n  the form 
ij. 

i is the deviatoric stress tensor of T. i n  mixed Di T 
j 3 

component form 

0 (T) is the temperature-dependent yield stress i n  
0 

simple tension. 

(2.79) 

(2.79a) 

Eqpation' 2.79 represents a hypersurface i n  nine-dimensional stress space. 

point on this surface represents a point a t  which yield can begin. 

is assumed tha t  the temperature e f f ec t  changes only the s ize  of the yield sur- 
face (through Oo(T)) and t ha t  the surface w i l l  r e t a in  the same shape and orienta- 

t ion  as i n  the i n i t i a l  reference temperature state. 
pressure and temperature, this is a very close approximation and is found t o  be 

i n  good agreement w i t h  experiment for  cormDon metals. 

Any 
Also, it 

For moderate hydrostatic 

Then, from Eq. 2.78, the function D i n  Eq. 2.75 must sa t i s fy  the 
/ 

i j  
following two necessary conditions: (1) the r e s t r i c t ion  Dii = 0 must be im-  

posed to ensure zero p l a s t i c  volume change and (2) the principal axes of the 

p la s t i c  s t r a i n  increment and of D must coincide w i t h  the  principal axes of 

s t r e s s ,  since the material is isotropic.  

w i t h  suf f ic ien t  generali ty by choosing 

i j  
These two conditions can be sa t i s f ied  

(2.80) 

where 1 and 5 are functions of the deviatoric stress invariant and possibly 

a l so  of the stress history. 

Next, the derivation of the f u n c t i o n s  w i l l  be based on Drucker's postu- 

late (Ref. 19). Drucker's postulate states that "the net  work performed by 
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an external agency over a cycle of loading and unloading is nonnegative, posi- 

tive i f  the p l a s t i c  flow has occurred, and zero i f  there is only cha 

elastic strain".  This postulate leads t o  the following two requirements on the 

p l a s t i c  behavior: (1) the convexity of the yield surface with respect to the 

or igin of the stress space, and (2) the outward normality of the p l a s t i c  s t r a i n  

increment vector to the yield surface. 

yield function given by E q .  2.79 s a t i s f i e s  the convexity condition imposed on 

the yield surface. The second requirement suggests that the function 5 may 

take the same form as @; thus, 

It is noted t h a t  the uses-Hencky 

where 

26 2 5  A' = A [ 7 1 s  +2T 7 
and 

is a nonnegative scalar quantity 

7; is the deviatoric p l a s t i c  s t r a i n  
2.3 J+.  

(2.81) 

- rate tensor. 

Substituting the uses-Hencky yield function, E q -  2.79, i n to  Eq. 2.81 and 

using @. 2.28, one obtains the following flow rule: 

(2.82) 

Di i S. is the deviatoric stress tensor of S. i n  
3 J 

mixed component form and is defined t o  be 

l m i  
j j 3 m j  

D. 
s X = s i - - s  6 
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For cer ta in  materials, the  yield surface w i l l  change i n  case 
straining beyond the init ial  yield. 

subsequent yield function) that characterizes the work hardening (or s t r a i n  

hardening) behavior of the material depends on the loading history. 

several hardening rules  available t o  describe the subsequent yield function. 

Among them, the popular ones are "isotropic hardening" and "kinematic hardening". 

The change of the yield surface (called 

There are 

Isotropic hardening assumes tha t  during subsequent yielding from a plas- 

t i c  state, the yield surface w i l l  expand uniformly with respect to the origin 

i n  the stress space but w i l l  r e t a in  the same shape and orientation as it had 

in i t i a l ly .  It does not take in to  account the Bauschinger e f fec t  t ha t  is ex- 

hibited by many s t r u c t u r a l  materials. Mathematically, the subsequent yield 

function fo r  an isotropic  hardening material can be put  i n  the form: 

(2.83' 

where d# = Si' d p  0 is the i r reversible  plastic work expended. 
l j  

To account for  the Bauschinger e f fec t ,  Prager introduced the "kinematic 

hardening ru le"  which postulates t ha t  during subsequent p l a s t i c  flow, the yield 

surface t ranslates  (as a r ig id  body) i n  the stress space and t ha t  it w i l l  r e t a i n  
the same size, shape, and orientation that it had i n i t i a l ly .  

this can be expressed as 
Mathematically, 

(2.84) 

where ai' = cais(fj) which represents the t ranslat ion of the referenced or igin 

i n  the stress space of the yield surface and depends on the degree of hardening. 

It  should be noted *at, i n  the present analysis, the strain-hardening 

behavior of the material w i l l  be accounted for  by using the well-known 

"mechanical sublayer model" (Refs. 20, 21, 22). The feature of t h i s  model is the 

inclusion of kinematic hardening (see Appendix A). 
a t  any point is conceived of as Consisting Of "sublayers"; each sublayer behaves 

In  t h i s  model, the material 
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as an elastic, perfectly-plastic medium, having common s t r a i n  and a common 

elastic modulus but appropriately d i f fe ren t  yield stresses. 

p l a s t i c  medium (nonhardening medium), the yield surface remains unchanged i n  

the case of continued s t ra ining beyond init ial  yield. 

For a perfectly- 

2.3.3 Strain-Rate Effect 

For some engineering materials, the uniaxial s t ress-s t ra in  curve of 

dynamic loading tests w i l l  usually be d i f fe ren t  from those of s t a t i c  tests. 

The yield stress frequently increases with the increase of s t r a i n  rate. 

ever, t h i s  s t ra in-rate  e f f ec t  arises i n  a less understood fashion. 

How- 

The most general form of the uniaxial  s t ress-s t ra in  re lat ion including 

the s t ra in-rate  effect may be expressed as (Ref. 23) 

€ = X  (0; E , T ) k + Y ( a , E ,  T I  (2.85) 

where 

u and E are the uniaxial  stress and s t r a in ,  respectively 

T is temperature 

X and Y are functions of state 

U n d e r  static loading tests, the rate-tern may be neglected and one has the 

s t a t i c  uniaxial  s t ress-s t ra in  re la t ion  

(2.86) 

One of the simple methods fo r  approximating the s t ra in-rate  e f fec t  and 

which is i n  good agreement with experiment on cer ta in  types of coxrunon metals 

and al loys is t o  assume tha t  the uniaxial  s t ress-s t ra in  curve is affected by 

s t ra in-rate  only by a quasi-steady increase i n  the yield stress above the "Static" 

test yield stress and that the elastic deformation is independent of s t r a i n  rate.  

The increase in the  yield s t r e s s  under s t r a i n  rate may be expressed i n  the follow- 

ing simple form (Ref. 24) : 
I 

(2.87) 
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where 

u0 is the static yield stress 

E 
D and p are enipirically-determined constants for  the 

is the uniaxial  (or equivalent) s t r a i n  rate 

material, which may be temperature dependent 

u is the yield stress under E 
Y 

Alternate approximations a re  discussed, fo r  example, i n  Refs. 25 and 26. 

Equation 2.87, however, has been employed with sa t i s fac t ion  i n  recent years, 

and is adopted fo r  the purposes of the present study. 
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SECTION 3 

GENERAL OUTLINE OF ME"H0D OF ANALYSIS 

3.1 Background and Survey of Pertinent Literature 

In  this investigation, a t tent ion is res t r ic ted  t o  methods for  analyzing 

dynamic s t ruc tura l  response, with pr incipal  a t tent ion devoted t o  the t ransient  

responses of s t ructures  which are subjected t o  t ransient  external loads such 

as those ar is ing from gusts,  b l a s t ,  impact, etc.; simple-harmonic vibratory 

response is of secondary in te res t .  Explicit ly excluded from consideration is 

the "short t i m e "  o r  "early time" response which is of ten called "material re- 

sponse", and which pertains t o  the nature, propagation, and ef fec ts  of intense 

stress waves i n  the material as a r e su l t  of severe impact or  impulsive loads 

(mechanical and/or themmechanical) applied t o  the s t ructure;  roughly the 

t i m e  span of i n t e re s t  fo r  this type of response is of the order of from 1 t o  

100 microseconds. Only the "late tirae" response which is usua l ly  termed 

"structural  response" ( in  contrast  w i t h  "material response") is discussed here ; 

such responses involve times of in t e re s t  extending from time zero to 1 m i l l i -  

second or  perhaps t o  several  hundred milliseconds; t h i s  type of response per- 

ta ins  t o  the t ransient  bending and/or stretching behavior of overal l  structures 

o r  of s t ruc tura l  components such as beams, rings,  p la tes ,  she l l  panels, etc.  

Furthermore, principal i n t e re s t  i n  this study centers upon t ransient  Structural  

responses involving large deformations elast ic-plast ic  material be- 

havior. Sought is information on 9 the  & t ransient  responses (deflections,  

s t ra ins ,  and stresses a t  any selected point  i n  the s t ructure)  together with the 

t i m e  of occurrence o f  t ha t  peak and the permanent deformation condition of the 

s t ructure  a f t e r  subsidence of the externally-applied t ransient  loading. 

-- 

Accordingly, it is perhaps useful to review br ie f ly  the available analy- 

sis m e t h o d s  f o r  various categories of t ransient  s t ruc tura l  response problems. 

Convenient categories are indicated i n  the fo l lwing:  
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I Deflections Material Behavior I I Category small - Large I 4. Linear 
E l a s t i c  Elastic-Plastic 

X 

X 

X 

I IV X X I 
Further, it is useful to  tabulate,  as follows, the principal available t ransient  

response analysis methods # and t o  indicate which are  applicable t o  each of the 

problem categories c i ted above. 

Transient Response 
Analysis Method* 

A. Normdl Mode Method (NHH) 

B. Assumed Mode Method (AMM) 

(Refs. 27-29, for  example) 

1. (Refs. 27, 28) 

2 -  (Refs- 30,311 

3. (Ref. 31) 

4. (Ref. 31) 

C. Conventional Lumped Parameter (CLP) 

1. (Refs. 27, 28, 32) 

/ 2 .  (Refs. 33, 34) 

3. (Refs. 33-35) 

Applicable Structural  
Response Category 

I 11 111 IV 
(SD-LE) (LD-LE) (SD-E??) (ID-EP) 

X X 

X 
X 

X 

X 

X 

X 

X 

X I 4. (Refs. 33-35) 

+ This category includes s t r a i n  hardening as w e l l  as s t ra in-rate  dependent and 
temperature-dependent material behavior. 
++ 
brief discussion later. 

bibliography is not intended. 
i n  each category, for  which only static responses a re  discussed; selected such 
references are  discussed a t  pertinent places later i n  the text. 

Some special-purpose less comprehensive methods are included i n  a separate 

O n l y  typical  references i n  each category are ci ted;  the c i ta t ion  of a complete 
Also, note t ha t  there are  many uncited references 

* 
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!ransient Response 
rnalysis Method 

Fin i te  Difference i n  Space and Time (FDI 

1. (Refs. 2, 3, 36-41) 

2. (Ref. 42) 

3. (Same as under D.4) 

4. (Refs. 3, 43-60) 

Forward Integration i n  Space 
with F i n i t e  Differences i n  Time 

1. (Refs. 4, 5, 61-62) 

2. (Ref. 63') 

3. ( N o  Refs.) 

4. ( N o  Refs.) 

F in i te  Element i n  Space 
with F in i te  Difference i n  Time 
(FES-FDT) 

1. (Refs. 64-73) 

2. (Refs- 74-76) 

3. (Same as under F-4) 

4. (Refs. 77-78) 

Fini te  Element i n  both 
Space and Time (FES-FET) 

1. (Refs. 12, 79) 

Applicable Structural  
Response Category 

I I1 I11 I V  
;D-LE) (LD-LE) (SD-EP) (LD-EP) 

X 
X 

X 

X 

X 

X 
** 

** 

X 

X 

X 

X 

** ** ** X 

In  addition one could have various combinations of the above. For example, one 

often hears speculation (Refs. 80 and 81, for  example) concerning combining 

f i n i t e  difference and f i n i t e  element procedures i n  space t o  take maximum ad- 

vantage of the special  merits of each method fo r  appropriate par t s  of the struc- 

tu re  ( tha t  is, use f i n i t e  differences for  smoothly-varying regions of the struc- 

ture, and f i n i t e  elements i n  regions of s t ruc tura l  i r r egu la r i t i e s  such as ir- 
regular cutouts, etc.) -- i n  combination with an appropriate finite-difference 

** 
+ 
Method applicable but not described expl ic i t ly  i n  the l i te ra ture .  

Only static problems are discussed. 
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operator i n  time. 

open literature has not been found. 

However, a concrete i l l u s t r a t ion  of this approach i n  the 

For small-displacement, l inear-elastic s t ruc tura l  behavior (Category I ) ,  

the governing equations are l inear  and hence the use of the nonual mode ap- 

proach together with solution superposition is an applicable and e f f i c i en t  

method of solution. Each of the 0th.~ cited methods (B through G) may a lso  be 

employed for  this problem category but these are often more laborious and less 

at t ract ive.  

When large displacements are  encountered but the material behavior is 

still l inear-elast ic  (Category 111, the governing equations become nonlinear. 

In  this case the "normal modes" become amplitude-dependent; thus, the normal 

m o d e  method of analysis becomes impractical even i f  one approximates the be- 

havior as being piecewise linear. 
used. 

For such cases, methods B through G may be 

On the other hand, for  problems involving small-displacement, elastic- 
p las t ic  behavior (Category III), one can legitimately regard the system as re- 

taining its original  small-displacement l inear-elastic ident i ty  insofar as 

its normal modes are  concerned (as ident i f ied by the mass and s t i f fness  charac- 

teristics of the s t ructure) .  

equivalent p l a s t i c  forces which are  amplitude dependent. 

unwieldy since "solution superposition" is destroyed by the essential nonlinear 

character of t h i s  type of problem. Accordingly, methods B, C ,  D,  F, and G are 
be t te r  sui ted fo r  t h i s  Category 111 type of problem, w i t h  m e t h o d s  D and F most 
widely employed. 

P las t ic i ty  e f fec ts  may be taken in to  account as 
Hence, the NMM becomes 

Finally,  Category IV poses the most severely nonlinear set of conditions -- 
both geometric nonlinearit ies and material nonlinearit ies a re  present. While 

methods B, C, D,  F, and G are a l l  applicable t o  t h i s  type of problem, only the 

finite-difference method (FD: method D) has been highly developed for  analyzing 

this type of t ransient  response problem (Refs. 3 and 43-60) - only Refs. 77 

and 78 have reported the use of the finite-element method (FE: method F) for  

this transient-response-problem category. 

The finite-difference method is a very general and powerful method which 
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has undergone more extensive development fo r  each category (I, 11, 111, and 

IV)  of problems than any of the other methods mentioned -- much literature, 

not cited here, ex is t s  f o r  both s t a t i c  and t ransient  response problems. 

past 15 years, however, the finite-element method has undergone much develop- 

ment for  both static and t ransient  response problem, especially those i n  

Category I ,  with successively lesser developments i n  categories 11, 111, and IV. 

For the finite-element analysis  of static probLems i n  Category 11 (large- 

I n  the 

deflection, l inear -e las t ic ) ,  “urner e t  al. (Ref. 82) w a s  the f i r s t  t o  report ,  

and many extensions nave since been reported. Among these, four general schemes 

have emerged: 

1. 

2. 

3. 

4. 

The f i r s t  approach is based on establishing a l inearized incre- 

mental formulation; the load i s  applied incrementally. This 

geometrically nonlinear problem is solved by carrying out a 

re-evaluation of the element-stiffness matrix a t  each load 

stage. This “incremental change” i n  the s t i f fnes s  matrix is 

termed the “geometric s t i f fnes s  matrix” (Refs. 83-88). 

Schmit e t  al. (Ref. 89) has solved the geometrically nonlinear 

problem by seekang the minimum of the total potent ia l  energy 

function by a d i r ec t  energy search procedure. 

In  the th i rd  approach, the governing equations are solved by 

an i t e r a t ion  procedure such as the Newton-Raphson technique 

(Refs. 90, 91) 

S t r ick l in  e t  a l .  (Refs. 92, 93) analyze t h i s  geometrically non- 

l inear  problem by t reat ing the large deflection terms as equiva- 

l e n t  force terms which are derived from the pertinent energy ex- 

pression i n  the var ia t ional  formulation used; for  those special  

terms, a restricted assumed displacement f i e l d  is used fo r  the 

finite-element analysis t o  avoid cer ta in  numerical d i f f i cu l t i e s .  

This approach has a lso  been extended to t ransient  problems (see 

Refs. 75-76); when an implicit finite-difference t h e  operator 

is usedr i t e r a t i v e  and/or approximating extrapolative procedures 

are needed to take those t e r m s  in to  account. 
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For the finite-element analysis of static problems in category 111 

(small-deflection, elastic-plastic), various investigations have been carried 

out (for example, Refs. 94-99). Two means for treating material elastic-plastic 

behavior were employed: 

1. 

2. 

The method of initial strain (see Mendelson, Ref. 100). 

The idea is to modify the load-deflection equations of 

equilibrium so that the linear-elastic stiffness matrix 

is employed throughout the elastic-plastic load-deflec- 

tion range of interest, and plastic effects are taken 

into account through the use of "effective plastic loading" 

(Refs. 94-97). 

The tangent modulus method. This method is based upon the 

linearity of the incremental laws of plasticity, and deals 

with this behavior in a piecewise linear fashion (Refs. 98,99). 

The relative merits of these two approaches have been discussed by Marcal 

(Ref. 101). 

In Refs. 102 and 103, for example, the finite-element method is discussed 

for static problems in Category IV (both large-deflections and elastic-plastic 

behavior). A l s o  in Ref. 104, the finite-element equations of dynamic equilibrium 

and an increment stiffness equation are derived: however, no transient response 

predictions are reported. Reference 102 utilizes the initial strain concept 

for including plastic behavior, while Refs. 103 and 104 employ the tangent 

modulus approach; in all of these cases, a linearized increment formulation re- 

sults. 

Recently, Salus, Ip, and VanDerlinden (Ref. 77) have described the formu- 

lation and application of a finite-element approach for predicting the large- 

deflection elastic-plastic transient response behavior of beam-type structures. 

The resulting predictions, for several examples reported, are in good agreement 

with pertinent finite-difference predictions and experimental results. 

formulation is of the assumed displacement type but is not based upon variational 

principles. 

fields are introduced for all of the displacements, and transverse shear 

This 

Emphasizing the plastic part of the behavior, only linear displacement 
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deformation is included. While elastic, perfectly-plastic behavior is taken 

in to  account, the  e f fec t  of transverse shear on yielding and flow appears to 

be accounted f o r  only i n  an ind i rec t  fashion. 

From the preceding brief review of the finite-element l i t e ra ture ,  it 

is apparent that only limited finite-element developtents have been reported 

for  Category IV t ransient  response problems: involving both geometric non- 

l i nea r i t i e s  (large deflections) material nonlinearities (elast ic-plast ic  

behavior). Accordingly, the present study is devoted to developing, evaluating, 

and applying a finite-element var ia t ional  method €or analyzing the large-deflec- 

t ion elast ic-plast ic  t ransient  and permanent deformations of simple structures. 

Finally,  note should be made of a group of simpler but more r e s t r i c t ive  

methods fo r  estimating t ransient  responses and/or permanent deformations of 

s t ructures  ; these include the "rigid-plastic" method and the "energy-absorption" 

method. I n  the r igid-plast ic  method (Refs. 105-116), the e l a s t i c  deformation 

behavior is assumed to be negligibly small compared with that ar is ing because 

of p las t ic i ty .  

fo r  a s t ructure  are derived fo r  various levels  of approximation fo r  the kine- 

matics of the system; the deflections may be s m a l l  o r  large and the material 
may be rigid-plastic,  rigid-visco-plastic, and/or s t ra in-rate  dependent rigid- 

plast ic .  Except f o r  small displacements, the governing equations are nonlinear 

and numerical solution methods must be used. Often with t h i s  method one ob- 

t a ins  reasonably good estimates of the permanent deformation; however, the 

t ransient  response is always ra ther  badly i n  error :  the peak deformation is 

always under-estimated and the time to peak response is invariably too great. 

For "trends and/or parametric studies" wherein trends rather than accurate 

values are desired,  the r igid-plast ic  approach is of ten useful. Various 

"bound theorems" have been developed (Fcefs. 117-122) to estimate upper bounds 

and lower bounds on the deformations of impulsively loaded rigid-plastic and 

elast ic-plast ic  structures;  these form useful supplements t o  the r igid-plast ic  

analyses. 

Using the concept of plastic hinges, the equations of motion 

The "energy absorption" method (Refs. 123-127) is used only to estimate 

the permanent deformation of the s t ructure;  no t ransient  response information 

is obtained. I n  the energy-absorption approach, it is assumed that the primary 

39 



type or  pat tern of i ne l a s t i c  deformation is known for  the s t ructure  being 

analyzed. 

formed s t ructure  is negligible compared w i t h  that absorbed by plastic work. 

Accordingly, the permanent deformation is estimated by equating the p l a s t i c  

work absorbed by the st ructure  i n  deforming i n  the prescribed deformation 

pat tern t o  the total work done on the s t ructure  by the  externally-applied loads. 

Thus, for  example, i f  a s t ructure  w e r e  loaded impulsively, the s t ructure  would 

be given an i n i t i a l  kinet ic  energy which w i l l ,  i n  general, would produce both 

rigid-body motion and s t ruc tura l  deformations. The portion of t h i s  kinet ic  

energy which is available t o  produce s t ruc tura l  deformations is then equated to 

the p la s t i c  work absorbed by the s t ructure  -- thus providing an estimate of the 

permanent deformation s t a t e  of the structure.  The success of this method de- 

pends upon reasonable a p r i o r i  estimates of the primary pattern of deformation 

occurring during the large-deformation response; for  complex s t ructures  sub- 

jected t o  arbi t rary t ransient  external loading, t h i s  a p r i o r i  knowledge is 

usually lacking. For cer ta in  s t r u c t u r a l  configurations and external loadings, 

however, accumulated experimental evidence is available f o r  making such de- 

formation-pattern estimates. I n  such cases, very reasonable permanent deforma- 

t ion estimates r e s u l t ;  Greenspon (Refs. 124-127) has made very effect ive use 

of this excellent and e f f i c i en t  special-purpose approach. 

Also, it is often assumed tha t  the elastic energy stored i n  the de- 

The deficiencies of the r igid-plast ic  method and the energy absorption 

method have been overcome by employing numerical methods such as the f in i te -  

difference (FDS-FDT) method and the finite-element (FES-FDT) method. The 

present investigation has as one of the main objectives,  the extending of the 

FES-FDT approach t o  analyze i n  an accurate and rigorous manner the large- 

deformation elast ic-plast ic  t ransient  and permanent deformation of transiently 

loaded simple structures.  The in t en t  is tha t ,  i f  desirable,  the techniques 

developed i n  this study f o r  simple structures could be extended t o  analyze 

more complex structures.  

3.2 Variational Derivation of the Equations of Motion 

Util izing the Finite-Element Approximation 

As noted earlier, the finite-element approach is u t i l i zed  i n  conjunction 

with the Principle of V i r t u a l  Work and D ' A l e m b e r t ' s  Principle ( in  short:  
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4. PVW-DAP) integrated over time between times t and t as  i n  Hamilton's Principle 

to obtain the equations of motion for  a continuum or st ructure  which is permitted 

t o  undergo large-deflection elast ic-plast ic  transient deformations. 

present investigation, the assumed displacement form of the finite-element method 

is employed; when t h i s  is applied via  PVW-DAP and the usual reductions are  carried 

out, the result ing equations of motion for  an undamped system appear i n  the follow- 

ing conventional form (Refs. 93, 94, 96, 128): 

1 2 

In the 

where .. 
q* (q*) are the global generalized displacements (accelera- 

t ions) 

is the mass matrix for  the complete assembled dis- 

cretized structure 

is the usual s t i f fness  matrix (for  l inear  e l a s t i c  

s m a l l  displacement behavior) of the complete 

assembled discretized s t ructure  

is the vector of externally-applied (global de- 

noted by a superscript *) loading 

represents a "generalized loads" vector ar is ing 

from large deflections and is a function of 
2 3 quadratic (q* ) and cubic (q* ) displacement 

terms -- a Eonlinear force contribution 

is a generalized loads vector ar is ing from the 

presence of p l a s t i c  and/or thermal s t ra ins ,  and 

is associated with the l inear  t e r m s  of the s t ra in-  

displacement relations. 
~~ + 

PVW-DAP d i rec t ly  is su f f i c i en t  since it holds a t  every instant  of time. 
The use of the time integrated variational statement is optional; the use of the 
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{F;m(q*) is a generalized loads vector of or ig in  similar 

to tF*L) but is associated with the 
t e r m s  of the strain-displacement relations.  

P 

Alternatively, by employing the f ini te  element assumed-displacement ap- 

proach i n  conjunction with the PVW-DAP but by carrying out  the reduction pro- 

cess different ly ,  a computationally superior set of equations of motion is ob- 

tained. These "improved formulation" equations appear i n  the following form: 

where the quant i t ies  [ M I ,  {+>, {q*), and IF*) r e t a in  the meanings given follow- 

ing Eq. 3.1. However, {PI can be shown to  represent not only [K]{q*) of Eq. 3.1 

but also some p la s t i c  behavior contributions. 

"generalized loads" ar is ing from both large deflections and plastic (and/or 

thermal) s t ra ins .  

Also the term [H]{q*) represents 

It is shown i n  Subsection 3.3.4 and i n  Section 5 that the improved formu- 

la t ion  represented by Eq. 3.2 is much more e f f i c i en t  fo r  a given solution accur- 
acy than is the conventional (Eq. 3.1) formulation. 

The improved formulation and the conventional formulation a re  developed 

i n  d e t a i l  i n  Subsections 3.2.1 and 3.2.2, respectively i n  order to  i l l u s t r a t e  

the i r  similarities and differences. 

3.2.1 Improved Formulation 

In  the finite-element-analysis method, the en t i r e  domain of the continuum 

is subdivided in to  a f i n i t e  number of regions called " f in i t e  elements" or  "is- 

Crete elements", each having a f i n i t e  number of "nodes" as control points (see 
Fig. 3) .  

may a l so  be i n  the in t e r io r  region of the element. 

continuum which has an infinite number of degrees of freedom is thereby de- 

scribed approximately i n  t e r m s  of a f i n i t e  number of degrees of freedom a t  each 

of the f i n i t e  number of nodes s ince the generalized displacements within each 

f i n i t e  element is expressed i n  terms of (a) such variables called "generalized 

degrees of freedom" which are defined a t  the node points i n  conjunction with 

(b) suitably-selected interpolation functions to describe the dis t r ibut ion of 

These nodes are usually located a t  the boundary of each element but 

The behavior of the actual 
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each quantity throughout the in te r ior  of each f i n i t e  element. 

approach within the PVW-DAP framework resu l t s  i n  a finite-sized system of 

second-order ordinary d i f f e ren t i a l  equations. 

are the generalized degrees of freedom a t  each node of the complete assembled 

discretized s t ructure  (or continuum). 

Applying t h i s  

The unknowns i n  these equations 

Although many d i f fe ren t  kinds of finite-element models ex is t  ( t ha t  is, 

displacement, equilibrium, hybrid, mixed, etc. -- see Ref. 7, f o r  example), 

the assumed-displacement type of finite-element formulation or  model has been 

chosen for  development to analyze the present class of nonlinear t ransient  

response problems. 

perhaps each of the other types of finite-element models (see Appendix C )  -- 
and the re la t ive  m e r i t s  of each could be assessed; such an undertaking, how- 

ever, is beyond the intended scope of t h i s  study, 

A para l le l  study, of course, could be carried out by using 

In  the assumed-displacement-type of finite-element analysis,  the gen- 

eralized displacements const i tute  the primary variables. Hence s one selects 

appropriate interpolation functions "anchored to" control-point values which 

are the nodal generalized displacements. In  choosing appropriate interpola- 

t ion functions f o r  each f i n i t e  element to  be used i n  the assembled f in i te -  

element array, one may take in to  account the following "suff ic ient  conditions" 

which w i l l  insure that the finite-element solution w i l l  converge t o  the exact 

solution as  the continuum is more and more f inely subdivided [%29, 1301: 

1. Rigid-body modes of an element must be included; otherwise, 

the equilibrium conditions of the element as  a whole w i l l  

be violated. 

2. Uniform s t r a i n  states must be included; otherwise, it cannot 

be assured tha t ,  as the mesh s i ze  is made f iner ,  the s t r a i n  

w i l l  converge t o  the t r u e  state of deformation. 

The admissible conditions of compatibility should be satis- 

f ied  along the interelement boundaries as w e l l  as within 

the element. 

3. 

Accordingly, these guidelines are followed i n  selecting interpolation 

functions to represent continuous generalized displacements i n  the in te r ior  of 

43 



each f i n i t e  element. 

Section 4 for  an arbitrarily-curved beam element. 

A detailed description of this selection is given i n  

L e t  it be assumed tha t  the continuum or s t ructure  being analyzed has 
been subdivided conceptually into N f i n i t e  elements. 

Principle of V i r t u a l  Work combined with D ' A l e m b e r t ' s  Principle integrated over 

time from t 

elements 1, 2, ... , N as follows: 

Thus, one may write the 

to t2, Eq. 2.52a, as  the sum of the contributions fran f i n i t e  1 

where variations 

the displacement 

any element n: 

(3.3) 

6 are permitted only fo r  the displacements, consistent with 

constraints for  a l l  times + 
except a t  t and t2 and where for  1 

(3.3a) 

+ 
and hence the displacements a t  times tl and t 

A t  tines t and t2, the configuration of the system is regarded as being known 

2 

1 
are not subject t o  variation. 
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In Eqs. 3.3 through 3.3c8 V is the volume of the nth discrete  element and An 

is the portion of the surface or boundary area of element n on which the surface 

t ract ion T3 is prescribed. Both V and A pertain t o  the i n i t i a l  undeformed n n 
configuration. The summation, c, extends over the "pi" elements of the continuum. 

The other quantit ies have been defined following Eq. 2.52a. 

n 

L e t  {VI represent the displacement f i e l d  which consists of the components 

of the displacement vector expressed with respect t o  the undeformed base vector 

system of the coordinates €1 (see Fig. 1). 

assumed displacement f i e l d  of the form: 

One chooses for  each element an 

where [U(E') J is the matrix of appropriately assumed interpolation functions 

expressed i n  the coordinates of a generic point within the element, and 16) 
represents a set of undetermined independent parameters which are functions of 

t i m e  only. 

It  follows tha t  the nodal generalized degrees of freedom which are  the 

nodal generalized displacements, {q) , are defined i n  terms of the local  coordi- 

nate system of each element and can be obtained by substi tuting the coordinates 

of the nodal points into Eq. 3.4. Accordingly, one may obtain 

If one takes the same number of displacement parameters a s  the nodal generalized 

displacements, the transformation matrix [A] is a square matrix. By inverting 

Eq. 3.5, one has 

and Eq. 3.4 becomes 
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where 

Because ITJltjl] and IA1-l  
coordinate only, they are 

{ 6 v }  = 
Also, the  time derivative 

are a p r i o r i  chosen functions expressed i n  the 6' 
not subject to  variation; hence, 

of Eq. 3.7 becomes 

By using Eqs. 2.9 and 3.7, one may obtain the corresponding s t r a i n  y i j  
at any point i n  the element as a function of posit ion and the nodal generalized 

displacements, as follows: 

It follows that 

(3.10) 

(3.11) 

where D 

which include both small and large deflection e f fec ts  and which may be ex- 

pressed symbolically i n  the form* 

Dai , and D a  are the appropriate associated d i f fe ren t ia l  operators 
i j  ' 3 

Fhploying Eqs. 3.8 through 3.12, E q -  3.3 becomes 

(3.12) 

* 
Explicit examples are given i n  Section 4. 
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(3.13) 

where subscript B i s  used to signify that the [N] are evaluated along the ele- 

ment boundaries. 

/ 

In more compact form, E q .  3.13 may be written as 

(3.14) 

where the following quantities are evaluated for each f i n i t e  element+: 

V n  

(3.14a) 

(3.14b) 

. .  + The evaluation of S1' is discussed i n  Subsection 3.3.2, 
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(3.14d) 

Since the element nodal generalized displacements {q) for  d i f fe ren t  ele- 

ments are not completely independent, hence, a transformation is required t o  

relate the element nodal displacements t o  a column of independent global 
( m a s t e r )  displacements fo r  the discrete-element assembly, as follows: 

(3.15) 

where q 

system, {q*) are the complete set of “ m a s t e r ”  generalized displacements in- 

cluding a l l  node points of the canplete assembled discretized s t ructure ,  re- 

ferred t o  the global coordinate system. The quantity [Jl includes the e f fec t  

of transferring from local  coordinates for  each individual element t o  global 

reference coordinates fo r  the system as a whole. When the coordinate trans- 

formation is not required (that is, when the element generalized displacements 

are already i n  the same direct ion as the global generalized displacements) , [Jl 
is a simple Boolean matrix. 

are the element generalized coordinates i n  the loca l  coordinate n 

Performing the indicated transformation, Eq. 3.14 can be writ ten as 

(3.16) 



w h e r e  - 

Integrating the last  term which appears under the in tegra l  sign of Eq. 3.16 by 

parts and using the f ac t  t ha t  the v i r tua l  generalized displacements vanish a t  

Since the v i r tua l  global (master) generalized displacements {6q*) are inde- 

pendent and arb i t ra ry  a t  each ins tan t  of t i m e ,  the  following equation of 

dynamic equilibrium re su l t s  from F.q. 3.17: 

(3.181 

Given a set of i n i t i a l  conditions {q*), {;*I, and {F? a t  t = 0, and the proper 

boundary conditions, the system of second-order d i f f e ren t i a l  equations repre- 

sented by E q .  3.18, may be solved i n  a step-by-step t i m e w i s e  fashion by using, 

fo r  example, the finite-difference scheme, Further aspects of the solution 

process are noted i n  Subsection 3.3. 

Equation 3.18 represents the "improved formulation" form of the equa- 

tions of dynamic equilibrium. 

3.2.2 Conventional Formulation 

I n  order to make clear the source of the "apparent differences" between 

the improved formulation (Eqs. 3.2 or 3.18) and the  conventional formulation 
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represented by Eq. 3.1, a para l le l  derivation of the latter is presented i n  

the following. I n  f ac t ,  the derivations are  ident ical  up to and including 

Eqs. 3.13 and 3.14 through 3.14e. Por the conventional assumed-displacment 

formulation, one proceeds t o  express the stresses i n  terms of the displace- 

ments via  the s t ress-s t ra in  re lat ions and the strain-displaceraent relations.  

That is, only the terms represented by Eqs. 3.14a and 3.14b undergo a fur ther  

reduction by using the following s t ress-s t ra in  relation: 

(3.19) 

w h e r e  ff. represents the components of the total p l a s t i c  s t ra in .  

pressing the t o t a l  strain y 
via  E q .  3.10, Eqs. 3.14a and 3.14b may be rewrit ten as: 

N e x t ,  ex- 
i n  terms of the generalized displacements iq) kf. 

{+) = \-I p?A.jpl i  dvn 
V” 

and (multiplying Eq. 3.14b by (q3): (3.20al 
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w h e r e  

I 

Vn 
and where superscripts L and NL re fer  to l inear  and nonlinear t e r m s ,  respectively. 

Also note that the subscript  "p" has been applied t o  fL and fm to denote the 

presence especially of plastic s t r a i n  but t h i s  can a l so  re fer  to the presence 

of other " i n i t i a l  strains" such as thermal s t ra ins .  

P P 

Substi tuting Eqs. 3.20a and 3.20b in to  Eq. 3.14, one obtains 

(3.21) 

where if) and tml are defined as previously stated, and 
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(3-22) 

men, transforming the element nod& disp~ceanents Iql to independent global 

displacements fq*) of the discrete-element assembly as described previously, 

Eq. 3.21 can be rewritten as 
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Since the var ia t ions L 6q* J can be independent and arbi t rary,  the follow- 

ing conventional form of  the  equilibrium equations is obtained: 

3.3 Timewise Solution of the Governing Eq uations 

I n  order to obtain the timewise solution of a set of equations of 

dynamic equilibrium such as Eq. 3.1 or  Eq. 3.2, one may resor t  t o  ana ly t  

3.24) 

c a l  

techniques or numerical techniques depending upon the mathematical (and/or 

physical) nature of the problem. 

For small-deflection l inear-elast ic  behavior, fo r  example, one may re- 

cast these equations in to  normal mode form and solve the resul t ing equations 

of motion analytically, mode by mode i f  the forcing functions are modally un- 

coupled or are properly sequentially coupled. 

response of each mode then provides the t o t a l  response of the system. Alterna- 

t ive ly ,  i f  desired, one may solve these equations (Eq. 3.1 or 3.2 i n  the i r  

present generalized coordinate form) t i m e w i s e  by using a f inite-dif  f erence 

numerical procedure whereby one obtains a recurrence equation which provides 

a solution step-by-step i n  finite-time increments. 

Superposition of the forced 

Of these two methods, i f  the  dynamic system is l inear  and is subjected 

t o  a t ransient  forcing function which excites mainly the lower frequency modes 

of the system, it is frequently more convenient and e f f i c i en t  t o  use the 

normal mode approach. However, i f  the s t i f fnes s  matrix (and/or the mass matrix) 

var ies  with time as i n  the present c lass  of nonlinear problems, the normal modes 

a lso  vary i n  t i m e ;  hence, the normal&e approach becomes impractical. In  such 

cases, the d i r ec t  f i n i t e  difference approach appears t o  be the only feasible 

method developed to date. Accordingly, the numerical f inite-difference method 

is employed i n  the present study for  solving equations of motion l i k e  Eq. 3.1 

or Eq. 3.2. 

I n  par t icular ,  the central-difference finite-difference time operator 

is employed fo r  purposes of i l l u s t r a t ing  the solution process for  the improved 

and fo r  the conventional formulation i n  Subsections 3.3.1 and 3.3.2, respectively. 
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Then the comparative storage and computing requirements of these two formulations 

axe discussed in Subsection 3.3.3. Next, since a wide variety of timewise finite- 

difference operators or methods has been developed, a brief discussion of the ad- 
vantages and disadvantages of some of these methods is given in Subsection 3.3.4 -- 
leading to the selection of the central-difference method for principal use in 

the present study. 

Finally, it should be noted that a somewhat different approach teamed 

"the finite element method in space and time" has been developed (Refs. 12, 7 9 ) .  

In this method, the initial value problem is handled as a boundary value prob- 

lem with the given initial conditions treated as prescribed boundary conditions. 

By using a procedure similar to that used in the discretization of only the 

space domain (as described in previous subsections), the whole domain (both 

time and space) of interest is discretized into a finite number of discrete 

domains each having a finite number of nodes. 

degrees of freedom is permitted. Then, suitable interpolation functions, which 

are both time and space dependent, are selected throughout the interior of each 

discrete domain. 

integrated PVW-D'Alembert variational statement results in a set of simultane- 

ous algebraic equations in the space and time degrees of freedom. Depending 

upon the type of interpolation function used (especially for the time domain), 

one may obtain sets of equations corresponding to the use of many of the con- 

ventional finite-difference time operators, as well as a variety of other sets 

o f  simultaneous algebraic equations. In general, improad convergence and 

calculation stability will be observed as the entire space and/or time domain 
is more and more finely subdivided. 

At each node a finite number of 

By applying this approach within the framework of the time 

3.3.1 Solution Process 

As indicated earlier, the equations of motion (Eqs. 3.1 or 3.18 and . 

E q .  3.2 or E q .  3.24) are to be solved at a sequence of instants in time At 

apart by employing the following central-difference finite-difference approxi- 

mation for the acceleration ;in at any instant tm: 
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(3,25a) 

Also, one may approximate the velocity & a t  time t by m 

?fl+! - Fm-’ 
~ 0 ( A t ) ‘  

2 ( A t )  F m  - 
(3.25b) 

Now note tha t  a t  any time ins tan t  tm, Eq- 3.24 for  the conventional 

formulation may be writ ten exactly as 

A l l  quant i t ies  i n  Eq. 3.26 except IM1 and [K] change with time (i.e. , [MI = 

[MI1 = ..- = [MI,; [Kl = [Kll = ... = [IC],). 

Eq. 3.26 except for  {G*> 
obtain {:*},. 

earlier t i m e  ins tan ts  ( tha t  is, {q*Im, {q*>m-l, etc.) , one can determine 

{q*>wl approximately from Eq. 3.25a as: 

Assuming that a l l  quant i t ies  i n  

are known a t  time t , one can solve Eq. 3.26 to m I3 
Since one has already obtained the solution for  {q*} a t  a l l  

(3.27) 

where a l l  quant i t ies  on the right-hand s ide  of Eq. 3.27 a re  known. 

Eq. 3.27 gives an expl ic i t  evaluation for  the generalized displacements a t  

time t i n  terms of known information a t  times t and t Accordingly, 

Eqs. 3.25a and 3.25b are known as explicit f i n i t d i f f e r e n c e  operators. 

Thus, 

m + l  m IU-1‘ 

Similarly, Fq. 3.24 for  the improved formulation may be writ ten a t  
time t as m 
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(3.28) 

In  E q .  3.28, a l l  quant i t ies  except [MI change, i n  general, with time. I f  the 

solution has been obtained for  earlier instants i n  time. one may compute 

{q*), from E q .  3.28 and then use E q .  3.27 to obtain {q*),,. 

Assuming that a t  t = 0, the s t ructure  is a t  a known condition such as 

since {F*I0 is prescribed and a l l  other quant i t ies  are known. 

In the t i m e w i s e  step-by-step solution procedure involving large-deflec- 

t ion elast ic-plast ic  t ransient  responses v ia  the spa t i a l  finite-element pro- 

cedure described i n  Subsection 3.2 (from which ws. 3.18 and 3.24 resul ted) ,  

cer ta in  quant i t ies  i n  the governing equations change with time and hence must 

be re-evaluated, i n  general, a t  ins tan t  i n  time. For example, for  the 

improved formulation, Eq. 3.18 o r  3.28, it is necessary a t  time t t o  evaluate 

{pIm and [hl, by using Eqs. 3.14a and 3.14b for  each f i n i t e  element -- the 

"assembly" of t h i s  information then provides {P) 

3.16b, respectively. Similarly, f o r  the conventional formulation, one must 

evaluate ifNL, from Eqs. 3.22, 3.20e, and 3.20g, respec- 

t ively,  fo r  each f i n i t e  element -- the  assembly of t h i s  information then pro- 

vides k*NL1m8 {F*L) , and {FiNLIm via  ws. 3.23b, 3.23c, and 3.23d, respec- 
9 P m  

t ive ly  . 

m 

and [HI, via  Eqs. 3.16a and m 

(4) , and {?) 
9 m' p m  P m  

It is seen tha t  the evaluation of {p),,[hl,, {?> , {fL) , and IfNL) 
q m  P Q  P m  

involves volume in tegra ls  of cer tain quantit ies.  For a s t ructure  undergoing 

large-deflection elastic-plastic behavior, it is impractical t o  evaluate these 

volume integrals  analytically;  instead, it is convenient and prac t ica l  to per- 

form th i s  integration numerically. 

(or quadrature) methods, Gaussian quadrature (Ref. 131) appears to be the most 

e f f i c i en t  for  a given accuracy. 

herein -- t h i s  requires that the stresses and strains be evaluated a t  a 

Among the various numerical integration 

Accordingly, Gaussian quadrature is employed 
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selected f i n i t e  number of Gaussian s ta t ions  or points over the "spanwise" and 

depthwise region of each f i n i t e  element. 

Another ingredient which is common to  both the improved formulation and 

a t  each ins tan t  of time the conventional formulation is the solution for {c*} 
t via Eq. 3.28 and Eq. 3.26, respectively. These equations a re  of the form: 

m 

m 

where 

[MI is a known banded posit ive de f in i t e  symmetric 

matrix (the mass matrix for  the restrained or 
unrestrained s t ructure ,  whichevet case is be- 
ing t reated)  

is a vector of unknowns which must  be de- 

termined by solving Eq. 3.30 

is a known vector (representing a l l  terms 

except i n  Eq. 3.26 or 3.28) 

{x( t )  In\ 

{b (t) In\ is 

which r e su l t s  i n  the solution: 

(3.31) 

-1 since [MI [MI = [I1 where [I] is the u n i t  diagonal matrix. However, it has 

been found tha t  independent of the number of t i m e  instants  a t  which one wishes 

t o  solve E q .  3.30 such a procedure is not as e f f i c i en t  as is the Choleski 

method (Ref. 132). 

Briefly,  the Choleski method involves factoring the matrix [MI to  form 
a lower triangular matrix [Ll and an upper tr iangular matrix (which is the 

transpose of the former) such that [MI = [Ll [L] where EL] is the transpose 

of [Ll. Thus, E q -  3.30 may be rewrit ten as 

T T 

(3.32) 
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Next, form an intermediate matrix {y), which is defined as 

From Eqs. 3.32 and 3.33, it follows tha t  

(3.33) 

(3.34) 

A t  each time instant ,  one solves Eq. 3.34 for {yIm very readily because [L] is 

a lower tr iangular matrix. 
by algebraic back-substitution. 

One then solves E q .  3.33 for  {xIm very rapidly also 

I n  Subsections 3.3.1.1 and 3.3.1.2, the principal s teps  involved i n  the 

t i m e w i s e  solution of,  respectively, (a) E q .  3.28 for  the improved formulation 

and (b) Eq. 3.26 for  the conventional formulation through the use of the ex- 

p l i c i t  central-dif  f erence f ini te-diff  erence operator (Eqs . 3.25a, 3.25b. and/or 

3.25~) are described br ief ly .  This description is intended not only to point 

out the sa l i en t  features of the solution but a lso t o  make clear  the nature and 

extent of the s imi la r i t i es*  and differences* between the hproved and the 

conventional formulation. 

3.3.1.1 Improved Formulation 

The s t ructure  is represented by an assemblage of a f i n i t e  number of 

discrete  elements (also called f i n i t e  elements), and the geometric properties 

of each element are defined so as to approximate the actual geonretry of the  

s t ructure  as closely as desired and/or feasible. 

the s t ruc tura l  material are assumed t o  be known as a function of temperatures 

and s t r a in  rate. The s t ructure  is assumed t o  be subjected to externally- 

applied loads which are  prescribed i n  both space (over the surface and/or 

throughout the volume of the s t ructure)  and time. 

Eq. 3.18, to be solved according to the improved formulation are restated here 

for convenience: 

The mechanical properties of 

The equations of motion, 

(3.181 

These aspects are then slrrrimarized in Subsection 3.3.3. 
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Star t ing from a set of given i n i t i a l  conditions a t  time t = t = 0 on 
0 

the generalized displacements (Is*) = E O ) ,  fo r  example) and the generalized 

veloci t ies  {i)o, one can solve E q .  3.28 fo r  {q*j0 a t  time to and then employ 

Eq. 3.29 t o  compute {q*)l. 

used t o  advance the solution i n  successive time increments A t .  
volved i n  using the finite-element method and the present timewise solution 

procedure follows (see the information flow chart  of Fig. 4a): 

Step 1: Construct the mass matrix [m] f o r  each f i n i t e  element and then 

assemble these contributions according to Eq. 3.23f t o  form the mass 

.. 
A s l igh t ly  d i f fe ren t  but similar procedure is then 

The process in- 

matrix [MI for  the complete assembled discretized structure.  This 

[MI represents the "final" m a s s  matrix i f  the s t ructure  has none of 

its generalized displacements constrained ( tha t  is, held equal to zero, 

for  example); however, i f  such constraints ex i s t ,  one forms a reduced 

or  constrained m a s s  matrix (and, i n  f ac t ,  a reduced set of the equations 

of motion) by delet ing the rows and columns of [MI associated with those 

generalized displacements which a re  prescribed to be zero. 

Next, t h i s  constrained mass matrix is factorized t o  consis t  of a lower 

t r iangular  matrix [L] and an upper tr iangular matrix [L] according t o  T 

the Choleski scheme: 

I M J =  I L I  t ~ f  (3.35) 

Since [MI does not change i n  value with time as the t ransient  s t ruc tura l  

response proceeds, one needs t o  determine [L] and [L] only once -- these 

quant i t ies  need not be re-evaluated a t  each time s tep  of the calculation. 

The prescribed externally-applied t ransient  forces can be em- 

T 

Step 2: 

ployed t o  calculate  the generalized applied forces I f}  acting on each 

d iscre te  element: a t  each time ins tan t  t of in te res t .  These, i n  turn,  

can be assembled according to Eq. 3 .16~  t o  form the assembled applied- 

loads vector {F*) fo r  the complete assembled discretized structure.  

m 

Step 3: Assuming tha t  a t  zero time (t = 01, the generalized displace- 

ments {q*j0 = 0, the generalized veloci t ies  are nonzero {i*j0 = {a) , and 

that nonzero external forces {F*} are present. In  this case, Eq. 3.18 

becomes 
0 
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(3.36) 

or 

(3.36a) 

from which one can calculate (3) 
scheme. Then from Eq. 3.29 one obtains 

by using the earlier-described Choleski 
0 

where 

(3.37) 

(3.38) 

$ *fro = { a } = prescribed initial generalized 
velocities (3.38a) 

Also, 

(3.39) 

For this case, however, it has been assumed that {q*j0 = {O). 

placement configuration {q*J1 at time t 

Step 4: Knowing the generalized noifal displacement increments 

Thus the dis- 

= t + At is known. 1 0  

1 {Aq*)l E (q*I1 - {q*) 
at time t , one knows also the unstarred individual element quantities 
{AqIl and {q) 

crement (Ay..) developed from time t to t at every Gaussian station 
1 3  1 0 1 

(or point) required over and depthwise through each finite element 

from Eq. 3.10: 

ana the generalizeu nodal displacements {q*) 
0 

1 
via Eq. 3.15. Hence, one can calculate the strain in- 1 
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With a knowledge of (a) the s t resses  a t  t 

increment (AyijIl, one can determine the stress increments (AS 

the stresses (S ) a t  time t a t  each Gaussian s t a t ion  by using the 

pertinent e las t ic-plast ic  s t ress-s t ra in  re lat ions,  including the 

yield condition and flow ru le  ( th i s  matter is discussed i n  d e t a i l  i n  

Subsection 3.3.2) . 

= tl - A t ,  and (b) the s t r a i n  
0 i j  

l a n d  ) 

i j  
1 1 

Step 5: N e x t ,  one can calculate {p) and [hl for  each individual 1 1 
finite element by using Eqs. 3.14a and 3.14b, respectively. Assembly 

of this information according t o  Eqs. 3.16a and 3.16b, respectively, 

provides {PI1 and [HI Since the prescribed generalized force vec- 1' 
t o r  {F*I1 is available from known if) ,  information, the equation of 

motion, Eq. 3.18, a t  time i n s t a n t  t becomes: 

' 

1 

In  the in t e re s t  of minimizing computer storage and the  number of 

manipulations, one f i r s t  forms for  each individual element {b 1 
( i f )  - {p) - [h] {q))l. 

of Eq. 3.41 by 

= 
n l -  

Then one forms the right-hand s ide vector 

For c l a r i t y  of discussion, however, the form of the equation repre- 

sented by Eq. 3-41 is used here. 

Step 6 :  Since the right-hand s ide of Eq. 3.41 is now known, one can use 

the Choleski scheme to solve the following equation f o r  the accelera- 

t ion  {q*ll.: 

(3.41) 

(3.42) 

( 3.42a) 

Step 7: With {a*), now known, one can calculate  the generalized displace- 

ment increment {Aq*), from E q .  3.25a as 
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. where  

(3.43a) 

Tnus, from E q .  3.43a one has 

(3.44) 

The process then proceeds cycl ical ly  from Step 4 onwards fo r  as many the 
steps as 2esired. 

For conciseness, the selection of a pertinent time increment size A t  

is discussed in Subsection 5.3. 

3.3.1.2 Conventional Formulation 

For convenience, the equations of motion which are to be solved i n  the 

conventional formulation (Eq. 3.24) are repeated here: 

(3.24) 

The solution process fo r  Eq. 3.24 (see Fig. 4b) is very similar t o  that  j u s t  

described fo r  the improved formulation except fo r  some modifications i n  

Steps 1, 4, 5, and 6. To avoid needless repet i t ion,  only these modifications 

are described here. 

Modifications t o  s tep  1: I n  addition t o  forming and factoring [MI, one 

must form the s t i f fnes s  matrix [k] fo r  each element and then assemble 

th i s  information according t o  Eq. 3.23a t o  form [K] for  the complete 

assembled discretized structure.  Note tha t  [MI and [K] need to be 

formed only once -- they do not change as the t ransient  s t ruc tura l  

response proceeds i n  time. As i n  the case of [MI, i f  displacement 

constraints are  present i n  the problem being analyzed, one m u s t  
form a “constrained” o r  “reduced” s t i f fnes s  patrix for  the ent i re  

assembled d i s c r e t i z d  structure.  
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Modifications to Step 4: In  addition to requiring the determination and 

storage of stress increments and stresses a t  each Gaussian s ta t ion ,  

one is required now to determine and s tore  a lso the p l a s t i c  s t r a in  

increments and p las t i c  s t r a ins  a t  each Gaussian s t a t ion  a t  each time 

instant .  

Modifications t o  Step 5: Because of the presence of large deflections 

{$I,, ami 
NL and elast ic-plast ic  e f fec ts ,  one must calculate  If 

If 

integrals  indicated by Eqs. 3.22, 3.20e, and 3.20g, respectively. 

The assembly of t h i s  information according to Eqs. 3.232, through 

3.234 is then accomplished t o  form 

Here again the actual operations are  done more compactly than th i s  

description implies. 

Modifications to Step 6 :  

I 
q 1' NL for  each f i n i t e  element by performing numerically the volume 

P 1  

NL , IF*;}18 and {F*? P I  

Now a t  t i m e  tl a l l  information needed t o  

write Eq. 3.24 is available: 

Note that the forming of the right-hand side (RHS) of E q .  3.45 

requires the multiplication of [K] by {q*I1; then this "force 

vector" is added to  the remaining terms of the RHs force vector. 

Thus one needs t o  have both [L] and [K] stored fo r  use. 

Otherwise the timewise solution process for the conventional formu- 

la t ion  proceeds i n  the same fashion as  that  described for  the im- 

proved formulation. 

3.3.2 Evaluation of Stress Increments , Stresses ,  P las t ic  

S t ra in  Increments, and P l a s t i c  strains+ 

In the present subsection, the calculation procedure fo r  the determina- 

t ion  of stress increments and s t resses  a t  any s t a t ion  (such as Gaussian, for  

example) i n  each element is described. Because the "mechanical sublayer model" 

.c 
This procedure applies fo r  both the conventional and the improved fornulation. 

63 



is adopted i n  the present analysis,  the only consti tutive re la t ion  considered 

is tha t  for  a hcnnogeneous, i n i t i a l l y  isotropic ,  e l a s t i c ,  perfectly-plastic 

strain-rate dependent sol id;  s t r a i n  hardening is automatically acconrmodated by 

the mechanical sublayer d e l .  

A convenient way to  compute the s t r e s s  component increments and stress 
components a t  time tel = (m+l) A t ,  as discussed i n  Refs. 46 and 48 w i l l  be 

employed; it is assumed t h a t  a l l  stresses and s t r a ins  are known a t  time tm. 

One begins by assuming that the s t r a in  increment (by. . )  from time t t o  

t h e  t as calculated by Eq. 3.40, is  en t i r e ly  e l a s t i c ,  and a t r i a l  (over- m + l  
s c r ip t  T) value of s t r e s s  increment is calculated from the relat ion : 

a3 m+l' m 

+ 

where 

Hence, the t r ia l  stresses a t  time tHl are given by 

(3.46) 

(3.47) 

Then a check process is performed by subst i tut ing t h i s  t r ia l  value of #e 

s t r e s s  in to  the Uses-Hencky yield function, Eq. 2.79, to determine whether or 

not the t r ia l  s t r e s s  s t a t e  lies inside the yield surface; thus one may write 

(3.48) 

where 0 is the appropriate known uniaxial yield s t ress .  Also, it should be 

recalled tha t  the Mises-Hencky yield function is expressed i n  Eq. 2.68 i n  terms 

of TS where 2 = 

Y 

s i .  3 j 
T 

I f  QwlZ 0 ,  the  t r ia l  stress s t a t e  lies within the e l a s t i c  domain 

bounded by the yield surface. 

p l a s t i c  f l aw and the incremental deformation can only be e las t ic .  

Therefore, for  this time s tep  there has been no 

Hence, the 
i actual stress (SjIwl is equal t o  the t r ia l  

-I- 

+ Such calculations are carried out for  each 
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(3.49) 

layer of the mechanical sublayer model. 



and, the p la s t i c  s t r a i n  state is 

T 

m + l  However, i f  @ 

(i.e., i n  the undefined region). Therefore, the t r ia l  assumption tha t  the 
ent i re  s t r a i n  increment i n  an e las t ic -s t ra in  increment is not valid. P l a s t i c  

flow has occurred within this time step and the actual stress state must l i e  

on the yield surface according to the theory of perfect  p las t ic i ty .  

the calculation proceeds as fo l low.  

> 0 ,  the t r ia l  s t r e s s  state l i e s  outside the yield surface 

Then, 

The total s t r a i n  increment can be decomposed in to  elastic and p l a s t i c  

(3.51) 

The s t r e s s  increment is related to the e l a s t i c  component of the s t r a i n  

increment by the  re la t ion  

and the  actual stress is 

(3.52) 

(3.53) 

Since the material is assumed to be incompressible w i t h  regard t o  p l a s t i c i ty ,  it 

follows that At: = 0 (or@ a = 0: spherical component of the incremental p l a s t i c  
3 

strain). Then from E q .  3.5i one has 

(3.54) 
e 

m+ I 

and 

(3.55) 

Substi tuting Eqs. 3-54 and 3.55 in to  E q .  3.52, r e su l t s  i n  
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(3.56) 

J *q 
where 2 is  a r e a l  

The stress 

i = s i  x 
nonnegative constant which w i l l  
Di 
S .  determines the direction (or 

3 

(3.57) 

be calculated later. 

re la t ive  proportions) of the 
plas t ic  s t r a i n  increment. 

A t  from (S .) 

computational convenience, the deviatoric component of the tr ial  stress (S 

which lies between (S .) 

direction. Thus, Fq. 3.56 becomes 

These directions w i l l  vary, over the time interval  
*i "i to  (Sj)m+l as a r e s u l t  of continually straining. However, for  
3 m  D T  i 

j)m+l 
and (S j)m+l w i l l  be used to approximate the correct + 3 m  

Further, combining w i t h  Eq. 3.46, one has 

(3.58) 

(3.591 

where E -  
+ - -  A m +  l A"+, - I+ Y 

The p l a s t i c  s t r a i n  a t  t i m e  twl is given by 

(3.61) m- I 

t 
The quant i t ies  and lei i n  Eqs. 3.60 and 3.61 can be determined 

i from the f a c t  t h a t  (Sj)m+lmust sa t i s fy  the yield condition: 

Alternate approximations could be used (see Refs. 133 and 134, f o r  example). + 
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Substi tuting Eq. 3.60 in to  Eq. 3.62 and solving fo r  one obtains the 
physically val id  value: 

A 

w h e r e  

(3.63) 

(3.63a) 

The preceding discussion has pertained to the use of elastic, perfectly- 

p l a s t i c  rate-independent material whose yield stress is U 
Y 

the yield stress is rate dependent, the  same procedure applies except that the 

yield stress Q i n  Eq. 3.48 is the strain-rate depedent  yield stress which is 

given approximately by Eq. 2.87 as 

Z O O .  However, i f  

Y 

where Q 

and c is the uniaxial  s t r a i n  rate. 

is the static uniaxial yield stress, D and p are material constants, 
0 

For the three-dimensional problem, it is 
assumed tha t  2 of E q .  2.87 may be replaced by the second 

a tor ic  s t ra in-rate  tensor. Thus, t h i s  equivalent s t r a i n  

invariant of the devi- 

r a t e  is given by 

.1 9 1  

(3.64) 

-: 

where the strain-rate  components y; (and/or yi) are given by yA = (Ayi)/(At). 

Other a l ternat ives  for E have been proposed (see Refs. 46, 133, 134). 
j 

It should be noted tha t  i n  the solution procedwe for  large-deflection 

elast ic-plast ic  tjcansient responses, the tracing of the st---;s history is 
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required fo r  both the conventional formulation, E q .  3.1, and the improved forma- 

t ion,  E q .  3.2, because of the nature of the elast ic-plast ic  theory used. How- 

ever, i n  addition t o  the stress history, the tracing of the plastic s t r a i n  

history is also required fo r  the conventional formulation but not f o r  the im- 
proved formulation. 

improved formulation is used. 

next subsection. 

This may re su l t  in the saving of computer storage, i f  the 

Further discussion of this w i l l  be given in the 

3.3.3 Comparison of Storage and Computing Requirements for 

the Improved versus the Conventional Formulation 

Frm the solution process discussed i n  Subsections 3.3.1 and 3.3.2, i t  

is clear that the storage/computing required are less for the improved formula- 

- t ion [ I - m e t h o d ,  f o r  short)  than fo r  the conventional formulation (C-method). 

By comparing the conventional formulation, Eq. 3.1, w i t h  the  iwproved fortnula- 

t ion,  Eq. 3.2, it is seen t h a t  the storage of both the assembled mass matrix 

and the assembled s t i f fnes s  matrix are required by the C-method but only the 

assembled mass matrix is required by the I-method. 

the matrix multiplication (K](q*} is needed fo r  the C-method but not fo r  the 

I-method. 

Also a t  each time step, 

Further, as was  mentioned before, because the s t ructure  undergoes large- 

deflection elast ic-plast ic  behavior, Gaussian integration is employed to evalu- 

a te  {p) and [h] i n  the I-method; hence, the storage of the stress history a t  

every Gaussian s ta t ion  i n  each discrete element is required by the I-method. 

On the other hand, i f  the C-method is used and Gaussian integration is a l so  

employed t o  evaluate {p}, {e} and i f  1, then, i n  addition to  the storage 
9 P 

of the stress history,  the storage of the plastic s t r a i n  history a t  every 

Gaussian s t a t ion  i n  each discrete  element i s  a l so  required. As fo r  the com- 
NL puter operations, a t  each time s tep ,  three matrices {fm,, and ifL}, and {f 

9 P P 
need to  be evaluated f o r  each discrete  element, i f  the C-method is used. But 

only two matrices: (p) and [h] (or {p) and [hl{q}) need to be evaluated for  

each discrete element, i f  the  I-method is employed. 

NL 

1 

Based on the above storage and operation considerations, it may be con- 

cluded t h a t  the I-method is more e f f i c i en t  and simpler than the C-method. T h i s  
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conclusion is substantiated by the computing experience discussed i n  Section 5 

fo r  various i l l u s t r a t i v e  examples. 

For the timewise numerical solution of undamped l inear  dynamic s t ruc tura l  

problems, many finite-difference operators have been explored t o  assess the i r  

a t t r i bu te s  and shortcomings. Some schemes are s tab le  no matter how large the 

time increment A t  is chosen t o  be -- and hence are termed "unconditionally 

stable";  others are unstable for  A t  larger than some critical value -- and 
thus are ternred "conditionally stable". Some introduce (unintentionally) a r t i -  

f i c i a l  o r  f a l se  damping whereas others do not exhibi t  this undesirable feature. 

API of these methods, however, usually* produce a phase-shift error  i n  the pre- 

dicted response, depending upon the s i ze  of the f inite A t  used -- some schemes 

exhibi t  more phase-shift e r ror  than others for  a given A t .  
t ion  of some features of the more commonly-used var ie t ies  of t h i s  method is 

given on the next page (Refs. 132, 135-142) together with some examples of 

users of each method f o r  l inear  and/or nonlinear t ransient  response predictions. 

A concise tabula- 

The criteria for  s t a b i l i t y  of each of these common methods have been 

established fo r  l inear  t ransient  response problems (Refs. 143-151). These 

studies have derived the A t  conditions under which exponential round-off error 

growth w i l l  resul t .  For smaller A t  values, this type of error  growth w i l l  not 
appear, and a "stable" calculation is said t o  r e su l t .  O'Brien e t  al. 11431 , 
Leech e t  al. [146, 147, 1481, Johnson [149], Nickell [150], and Xrieg [151] 

have i l l u s t r a t ed  t h i s  type of analysis and behavior. Nickell 's study [150] is  

especially extensive, t reat ing the 3-point central-difference method, the 

Newmark 6-method, the Wilson averaging method, and the Gurtin averaging method. 

It  should be noted (Ref. 48, for  example) that one can readily construct 

m-point forward-difference, central-difference, or backward-difference opera- 

t o r s  by Taylor series representation of the accelerations 2 and/or veloci t ies  x 
An exception has been noted i n  Ref. 146 wherein the 3-point central-difference 

formula w a s  used t o  solve the one-dimensional wave equation. 
such tha t  ( A t ] / ( & )  = 1, a solution which w a s  exact i n  both amplitude and phase 
w a s  obtained, 

* 
When A t  w a s  chosen 
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i n  t e r m s  of displacement information a t  m ins tan ts  i n  time; the truncation 

e r ror  of each approximation thus selected may be readily ident i f ied,  and de- 

pends upon the number (m, such as l, 2, 3, 4,  etc.) of t i m e  instants  used. 

Further by using the methods of Refs. 143, 145, 148, and/or 150, it can readily 

be shown that: (1) a l l  forward-difference operators are 'unconditionally un- 

s tab le ,  (2) a l l  central  difference operators are conditionally stable (a c r i t i -  

cal A t  ex is t s  beyond which error  blowup w i l l  occur),  and (3) a l l  backward- 

difference operators are unconditionally stable (i.e., s tab le  fo r  a l l  A t ) .  The 

Houbolt method is a four-point implici t  backward-difference method (that is, a t  

time n, Hn and are  expressed i n  t e r m s  of xn, xn-l, xn-2, and xn-3) i this 

method accordingly is unconditionally s tab le  (1491. Note tha t  a l l  of these 

implici t  methods ci ted i n  the tabulation on page 70 are unconditionally s tab le  

except for  type I2(b) -- a version of the Newmark &method. 

through I5 were not constructed from the above-described Taylor's stress approxi- 

mation -- somewhat d i f fe ren t  in tu i t ive  and/or ra t iona l  procedures w e r e  used. 

n 

Methods I 2  

Note that a l l  of the implici t  methods except the 6 = 1/4 version of 

Newmark's @-method introduce f a l se  damping. 

central-difference method noted i n  the tabular sununary do not introduce fa l se  

damping. In  Newmark's 6-method, fo r  example, the amount of f a l se  damping de- 

pends upon the value of 6 used; Newark  suggests (a) choosing 6 = 1/12 i f  one 

seeks high prediction accuracy fo r  an extended period of response for  a struc- 

tu re  with small actual damping or  (b) choosing 6 = 1/6 i f  one is interested i n  

only a few cycles of response -- the implication being that the error  introduced 

by f a l se  damping would be acceptably small for  many engineering purposes. 

The l a t t e r  method and the 3-point 

while round-off e r ror  i n s t ab i l i t y  is avoided by a l l  of the unconditionally 

s tab le  m e t h c d s  (permitting one to use as large a A t  a s  one wishes), the forcing 

function i n  a given problem may have severe spa t i a l  and temporal variations such 

tha t  one must use a f a i r l y  s m a l l  A t  i n  order t o  follow and ident i fy  the severe 

peaks, etc.  i n  the s t ruc tura l  response. Perhaps a A t  of some chosen fraction of the 

period of the highest significantly-excited mode should be used -- provided that 

one can make a ra t iona l  estimate of t h i s  si tuation. I n  such cases, the feature 

of unconditional 

stable method as 

s t a b i l i t y  may not be as much of an advantage over a conditionally 

one might think a t  f i r s t  sight. However, for  t ransient  loadings 
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which excite only the lwest few modes of the s t ructure ,  the "larger A t "  per- 
mitted by the unconditionally s tab le  methods compared with the "stringently 

small A t n  permitted by the 3-point central-difference conditionally stable 

method can be clear ly  advantageous. 

Although one can construct f inite-difference operators of the implicit 

type or of the expl ic i t  type having truncation errors  as s m a l l  as one wishes 

by using information a t  time s ta t ions  (n,n-1, n-2, n-3, ... ) or  (n+l, n, n-1, 

n-2, n-3, ... ), respectively, it is evident t h a t  one pays a price i n  the 

necessity of storing this information i n  order t o  march the solution ahead i n  

time. Further, for  large-deflection problems involving elast ic-plast ic  be- 

havior, the use of an explicit operator circumvents the i t e r a t ive  type of 

calculation (or extrapolation) fo r  the equivalent generalized loads required when 

an implicit  operator is used. 

choose an expl ic i t  operator whose accuracy vs. storage tradeoff is most bene- 

f i c i a l .  In  view of its simplicity,  accuracy, lack of f a l se  a p i n g ,  and mini- 

m a l  storage required, the 3-point explicit central-difference operator has 

been chosen for  principal use i n  this study; studies to define an "optimum" 
operator of t h i s  type have not been carried out. 

These considerations indicate that one should 

Although the c r i t e r i a  for s t a b i l i t y  of each of these common m e t h o d s  have 

been established fo r  linear t ransient  response problems (Refs. 143-1511, no 

similar assessment is known to have been made when these methods are applied 

t o  nonlinear s t ruc tura l  response probLems involving large deflections and in- 

elastic material behavior. Various of these methods, however, have been 

applied to such problems -- with A t  values chosen i n  conformity w i t h  the estab- 

lished s t a b i l i t y  and/or convergence c r i t e r i a  for  t he i r  use on l inear  problems, 

or by numerical experimentation. 

It has been demonstrated i n  the present study tha t  the (a) Houbolt and 

(b) Newmark (8 = 1/41 m e t h o d  both of which are unconditionally stable for l inear  

s t ruc tura l  response problems, now both become conditionally stable for  large- 

deflection nonlinear responses whether the material behavior is linear elastic 

or elast ic-plast ic  (see Subsection 5.3.2) ; also the 3-point central-difference 

method remains conditionally stable but  the s t a b i l i t y  c r i te r ion  becomes more 
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severe (smaller A t  is required) than for linear problems. These  results con- 

firm similar findings by Stricklin (751 and McLaughlin 11561. Further dis- 

cussion of th i s  matter is given i n  Subsection 5.3.2. 
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SECTION 4 

FORMLWiTION FOR A CURVED BEAM 

4.1 Introduction 

In Section 2, the equations which govern the large-deflection, elastic- 

plastic dynamic responses of a general 3-dimensional continuum are described. 

Section 3 presents the overall method of analysis. Based on the Principle of 

Virtual Work and D'Alembert's Principle, the spatial finite-element approxima- 

tion has been used to derive the equations of dynamic equilibrium. 

direct numerical integration scheme with an appropriate timewise finite-dif- 

ference approximation is used to solve the resulting equations of motion. 

Then, a 

In the present section, the application of this approach is demonstrated 

in detail for curved beamlike structures which undergo planar (two-dimensional) 

deformation with or without the inclusion of transverse shear deformation ef- 

fects. In the structural finite-element context, such configurations are 

termed "one dimensional". 

An arbitrarily-curved beam element is described here. Its specialiea- 

t i on  to represent simple circular ring and straight beam structural elements 

is given in Appendix B. 

The geometry of a curved-beam element is described in Subsection 4.2. 

The formulation for a Bernoulli-Euler-type curved beam element is discussed in 

Subsection 4.3, while Subsection 4.4 is devoted to a correspon2ing development 

for a Timoshenko-type (shear deformable) curved beam element. Both small- and 

large-deflection behavior are included. 

4.2 Geometry Description for a Curved Beam Element 

The geometry and nomenclature of a typical undeformed curved beam element 

(Refs. 157 and 158) are shown in Fig. 5. The parametric equation of the beam's 
centroidal axis on the planar surface can be expressed as 

- 
v, (4.1) 
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where Q is the length coordinate measured from node i along the centroidal axis  

(meridian) and W Z  represent global reference Cartesian coordinates. 

The u n i t  tangent vector, 2, to  the centroidal axis ,  and the unit  nom1 

vector, G, are defined as . -  

where p is the magnitude of the curvature vector dz/dn, and the reciprocal of 

IJ is known as the  radius of curvature, R, and is taken posit ive when the center of 

of curvature lies in the negative direct ion of T. 

It is assumed tha t  the slope, 4 ,  of the centroidal axis ,  which is the 

angle between the uni t  tangent vector and the y-axis of the local  reference 

Cartesian coordinate system (x,y,z) may be approximated with suf f ic ien t  accuracy 

by a second-order polynomial i n  rl  as follows: 
2 

= b o + b , q  + b ~ ?  (4.3) 

The constants bo# bl, and b2 can be determined from the known in i t ia l  geometry 

of the curved-beam element by requiring (1) the slopes of the idealized ap- 

proximated beam element and the  actual beam element to have the same slopes a t  

nodes i and i+l and (2) the ends t o  l ie  on the y-axis (i.e., z = 0 a t  both 

ends). Thus 

I f  4 is small, Eq. 4.6 may be approximated by 

Q d ?  = o  

(4.4) 

(4.5) 

(4.7) 

Using Eqs. 4.3, 4.4, 4.5, and 4.7, one obtains 
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Accordingly, the radius of curvature, R, of the centroidal axis may be ex- 
1 I pressed as R = -3 = - (b, +2 b2 ‘7 1 

Consider the beam subjected t o  2-dimensional deformation. A generic 

Its new posit ion point p i n  the beam elernent is displaced t o  a new posit ion P. 

vector, R, is given by 
- 

(4.9) 

where ‘T is the posit ion vector t o  point p, 

is a function of (?l,?J and 5. is the distance of point p from the centroidal 

axis  along the uni t  outward normal, n, direction. 

may be writ ten i n  terms of its components denoted by v and w i n  the direction 

of and n, respectively. Thus 

is the displacement vector which 

- 
The displacement vector v’ 

‘L % 

(4.10) 

and the displacement F(?l,5.) and r(?l,<) may generally be expanded i n  power 

4.3 The Bernoulli-Euler-Type Curved Beam Elenient 

4.3.1 Displacement Field 

L e t  the Bernoulli-Euler hypothesis (Refs. 11 and 159, fo r  example) tha t  

the beam cross section which is perpendicular t o  the centroidal ax is  pr ior  t o  

the deformation remains plane and perpendicular t o  the deformed centroidal locus 
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a f t e r  deformation, and a l so  tha t  it suffers  no s t r a i n  i n  the direct ion noma1 
to  the centroidal axis be employed. Hence, le t  the displacement f i e l d  v,w of 

the beam, Eq. 4.10a,be approximated by the m i d d l e  plane displacement v and w, 

and the  rotation JI as follows: 

% %  

where 

(4.11) 

(4.11a) 

The select ion of a sui table  interpolation function t o  represent each of 

those displacements throughout each element is one of the principal concerns 

i n  the construction of finite-element assemblage of the whole structure.  It  

has been shown i n  Ref. 160 t h a t  the inclusion of rigid-body-displacement modes 

i n  the assumed displacement f i e l d  of a cylindrical-shell  element leads to a 

better coarse mesh solution than i f  the  rigid-body modes are excluded from the 

assumed-displacement f i e l d  for  the l inear-elast ic  static cyl indrical  she l l  prob- 

l e m .  Also, it has been concluded i n  Ref. 161 that the use of a cubic polynomial 

t o  express both the ax ia l  displacement v and the normal displacement w i n  the 

c i r cu la r  r ing element exhibits a marked improvement over the use of a l inear  

expression fo r  v and a cubic expression for  w; also,  the former converges very 

rapidly to the exact l inear  e l a s t i c  static solution. B a s e d  on these considera- 

t ions,  two sets of assumed displacement functions for  the present Bernoulli-Eules- 

type curved beam element w i l l  be formulated i n  the present analysis: (1) both v 
and w w i l l  be represented by zubic polynomials i n  ri with rigid-body modes in- 

cluded (the finite-element formulation from t h i s  expression w i l l  be denoted as a 

CC, o r  cubic cubic, element) and ( 2 )  a Linear expression i n  rl fo r  v and a Subic 

expression i n  ?l fo r  w, also with the rigid body modes taken in to  account ( th i s  is 

termed the Lc, or  linear cubic element). 

Assuming tha t  the element is subjected to s m a l l  amplitude rigid-body 

with respect t o  the loca l  reference t ranslat ions V 

Cartesian coosdinate system (x,y,z), the  rigid-body displacement expressed along 

the curvil inear direct ions n, a of any point p(y,z) is given by 

and Vz, and rotat ion R Y X 

- -  
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To account for the strain-inducing modes and the rigid-body modes, the 

assumed displacement field for the CC element takes the form (Ref. 160): 

where B,, B,, ... , 6, are parameters which will shortly be expressed in terms 

of the eight selected generalized displacements of the element. 

pact matrix form, J3q. 4.13 becomes 

In more com- 

(4.13a) 

The generalized displacements, termed {q) , are chosen to characterize the de- 
formation state of the element, and are selected such that there are four de- 

grees of freedom v, w, +, and v, (= av/ari) at each node of the element: 
ri 

Corresponding to the assumed displacement field, Eq. 4.13, one finds 

The generalized nodal displacements, {q), and the parameters, {B), of the 

assumed displacement field are related by a transformation matrix [A] which 

may be obtained by substituting the coordinates of nodes i and i+l into Eqs. 

4.13, 4.15, and 4.16. Thus 

(4.17) 

Because [A] is a square nonsingular matrix, one may write: 
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(4.18) 
8x1 8 x 8  B r I  

Substi tuting Eq. 4.18 in to  Eq. 4.13, one obtains 

Turning now to the LC formulation, the assumed displacement f i e ld  

the form 

4.19) 

takes 

and the generalized nodal displacements now chosen to characterize the deforma- 

t ion  state of t h i s  IC element are  defined to be v,  w, and @ a t  each end of the 

element. Thus 

7 1) = L  V; W, ~i vi*, Wiet qi-1 J = [ A I  (4.21) 
6.1 6 x 6  6 x 1  

It should be noted tha t  by the nature of the assumed displacement 

finite-element var ia t ional  pr inciple  used, the in te rna l  equilibrium equation as 

w e l l  as the force boundary conditions are generally not sa t i s f ied  everywhere 

exactly by its solution, although the displacements obtained by t h i s  method are 

usually a very good approxima6,ion. The e f f ec t  of using more displacement modes 

is t o  improve the sa t i s fac t ion  of the equilibrium condition i n  the in te r ior  of 

each individual element and hence also the accuracy of the approximate solution. 

Il However, the compatibility of the additional displacement mode, such as v ,  

i n  Eq. 4.14, with neighboring elements is not necessarily required from the 

point of view of defining and evaluating the var ia t ional  argument i n  E q .  3.3 

because the s t r a i n  depends only on the f i r s t  derivative of v with respect t o  T I ,  

as  w i l l  be seen i n  the next subsection . 
eralized coordinates v, and v, 

through the use of the static condensation process (Ref. 71, but a rat ional  

condensation process has not ye t  been devised fo r  the corresponding dynamic 

problem. 

For a static problem, the two gen- 

of each element may be condensed out O i + l  I l i  

I n  the present CC-type element, the vrn w i l l  be treated as  an 
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independent generalized coordinate a t  each node of the finite-element assemblage, 

and the  compatibility of v, between neighboring elements is retained. n 
In  the following, the CC-type assumed displacement f i e l c  is employed i n  

conjunction with the strain-displacement re la t ions t o  obtain the equations of 

d y d c  equilibrium from the per t inent  var ia t ion statement, 33q. 3.3. The 

finite-element properties and the governing equations f o r  the LC-type assumed 

displacement f i e l d  may be derived i n  a similar manner, except t ha t  the corres- 

ponding [U] 2x6 [A] if, matrix should be used, The various matrices which are 

used symbolically i n  t h i s  section of the text are documented i n  Appendix B. 

4.3.2 Strain-Displacement Relations 

Unaer the Bernoulli-Euler hypothesis, the only nonvanishing stress com- 

ponent and corresponding s t r a in  component which need be introduced in to  the ap- 

propriate beam theory are the axial stress U and axial s t r a in ,  E. Also, l e t  the 

r a t i o  of thickness t o  radius of curvature be negligible i n  comparison with unity. 

The appropriate nonlinear strain-displacement re la t ion may be expressed as 

(Refs. 9 and 159) : 

(4.22) 
E = E ,  + < K  

’ ( E - X  -7 a 7  a 
w h e r e  

(4.23a) 

Combining Eq. 4.19 with E q .  4,23a, one obtains 



(4.24) 

I n  the process of solution, it is necessary to evaluate the s t r a i n  incre- 

ment, AE 
increment is related to both the displacement and the displacement increment by 

from time timl t o  time t Using Eqs. 3.40 ancl 4.24, the s t r a in  i' i' 

(4.25) A &  = 4 Eoi +r K ;  

(4.25a) 

(4.2513) 

I n  Eq. 4.25a, { A q j i  is the generalized 

which is computed d i rec t ly  ti-l i' 
of the system, {qIi is the generalized 

t o  t 

nodal displacement increment from time 

from the equation of dynaxnic equilibrium 

nodal displacement a t  time t and is i - 

= {q)i-l + {AqIi. The last term i n  Eq. 4.25a is of higher order compared 

with the other two terms, i f  the time increment s tep ,  A t ,  is small. However, 

this term can become s igni f icant  for the case of a suf f ic ien t ly  large time incre- 

ment step. 

numerical examples. 

Its e f fec t  w i l l  be discussed later i n  Section 5 in the context of 

I t  should be noted t h a t  the only nonlinear term retained i n  the s t ra in-  

displacement re la t ions ,  Eq. 4.23, is due to  the ro ta t ion  of the centroidal axis.  

This expression for the s t r a i n  is su i tab le  fo r  the cases where the deflection is 

large compared with the thickness of the beam, but  it is st i l l  s m a l l  compared 

w i t h  the spanwise (longitudinal) dimension of the beam. Otherwise, the follow- 

ing more accurate displacement and strain-displacement re la t ions  should be 

used (Ref. 9) : 



and 

where 

E = E ,  +c/ 

(4.26) 

(4.27) 

However, i n  the numerical examples carried out i n  the present analysis, only 

Eqs. 4.11 and 4.23 are used. 

Also, it should be noted that the rigid-body displacements given by 

Eq. 4.12 are only approximate because of the assumption t h a t  the amplitude of 
the rigid-body rotation is small; t h i s  displacement f i e l d  yields zero 

s t r a i n  when applied i n  the strain-displacement r e l a t ion  given by Eq. 4.23 (or 
Eq. 4.27) & f o r  snall deflections. 

amplitude rigid-body translations V , and Vz, and rotat ion R, with respect to  
Y 

the (x,y,z) coordinate system, then the correct rigid-body displacements ex- 

pressed along the curvil inear direct ion :,: of any p o i n t  p (y  ,z)  woulci be 

X 

I f  the element is subjected to  large 

where 

(4.28a) 

These large amplitude rigid-body displacements expressed by Fq. 4.28, w i l l  re- 
s u l t  i n  t he  prediction of zero strain when the more accurate strain-displacement 

r e l a t ion  Eq. 4.27 is usedl bu t  not  when the  approximate strain-displacement rela- 
t i on  represented by J3q. 4.23 is  applied. However, i n  t he  present analysis,  the 
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'vsimplified" strain-displacement relation Eq. 4.23 tcgether with the small ampli- 

tude rigid-body displacement modes represented by F q .  4.12 are employed prin- 

cipally because of the unwieldy nature of the expressions resulting from using 

E q .  4.27 together with an assumed displacement field which includes both the 
proper deformations and the exact rigid-body displacements given by Eq. 4.23. 

4.3.3 The Discrete-Element Property Matrices 

U n d e r  the Bernoulli-Euler assumption, the consistent mass matrix of the 

discrete element including both rotatory and translational inertia effects may 

be obtained from the expression for the kinetic energy, 5, as follows: 
- 2  . 2 

KE = /fif Po (7 t Gii 1 d 
vn 

I . z  
= T  I(( p o [  ( V - < V ) ' +  w J d L / n  

v, (4.29) 

or 

where 

(4.29b) 

and, b is the width, h is the thickness of the beam, and Po is the mass density 

per unit volume of the undeformed body. 

With the assumption that the velocity field is of a form 

sistent with the displacement function, Eqs. 4.13 and 4.15, one 

which is con- 

has 

(4.30) 
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where 

is consistent with Eqs. 4.13, 4.15, and 4.18. 

Substi tuting E q .  4.30 in to  Eq. 4.29a, one obtains: 

or 

where the consistent mass matrix [m] of the element is 

(4.30a) 

(4.31) 

The element's consistent mass matrix defined by Eq. 4.31b is synnnetric 

and posi t ive def in i te ,  and is consistent ( in  the var ia t ional  sense) with the 

assumed displacement f ie ld .  

using the consistent mass matrix w i l l  be a system of simultaneous (coupled) 

second-order ordinary d i f f e ren t i a l  equations. I n  order to  take advantage of 

potent ia l  storage and computing eff ic iencies ,  another m a s s  matrix called the 

lumped (diagonal) m a s s  matrix (Fiefs. 68, 73, 153, 162, 163) is often used i n  

dynamic analyses; the resul t ing equations of motion w i l l  be a system of de- 
coupled second-order ordinary d i f f e ren t i a l  equations. 

matrix of the present beam element can be written as 

The resul t ing equations of motion obtained by 

The lumped element mass 

(4.32) 
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where s = rli+l - TIi = element size, a and 6 are constants, and taken t o  be a = 1/2, 

6 = 1/24 (Ref. 162); other values also have been chosen fo r  the constants a and 6 ,  
Ref. 73.However, fur ther  s tudies  are needed t o  develop appropriate lumping for  each 

of the various types of selected criteria such as (a) by frequency matching i n  which 

the lumped mass properties are chosen such tha t  the lumped-mass system and the con- 

sistent-mass system have the same highest natural  frequency (Ref. 73) : (b) by stati- 

cally-equivalent considerations wherein the lumped mass properties are chosen t o  be 

s t a t i c a l l y  equivalent t o  the actual mass dist r ibut ion (Refs. 68, 153, 162, and 1631, 

etc. 

R e f -  190 i n  which the rates of convergence of the mode shapes and frequencies by 

the finite-element method using consistent- and lumped-mass formulations are 

established. 

Also, some very useful information fo r  t h i s  type of analysis is described i n  

The equivalent generalized nodal forces which correspond t o  or xepresent 

the externally-applied loading can be obtained by placing the assumed displace- 

ment f i e l d  in to  the expression fo r  the var ia t ion of the work of the externally- 

where - 
F ( t )  = F V ( t ) g  + F w ( t ) z  is the applied time varying force per 

z(t) = M ( t ) i  

un i t  length 

is the applied time-varying moment per 

u n i t  length. 
N 

Substi tuting the assumed displacement function, Eqs. 4.13, 4.15, and 

4.18 in to  ~ q .  4.33 

where 

The equivalent nodal force which corresponds t o  the internal  axial stress, 

U, a lso  can be obtained by placing the assumed displacement f i e l d  in to  the ex- 

pression of the var ia t ion of the work of the ax ia l  stress: 
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v;( 
Substituting E q .  4.24 i n t o  E q .  4.35 and 

the  beam cross section 

> 
A- 

where the integrations being taken over 

(4.35) 

introducing the stress resul tants  for  

A 
the cross section, A, of the beam ele- 

(4.36) 

ment, L, is the internal  force, and M is  the internal  bending moment of the 

cross section, r e s u l t s  i n  

The integrations along the centroidal axis length of the beam element which 

appear i n  {p) and [h] of E q .  4.37a may be performed numerically, for  example, 

by using the Gaussian quadrature scheme (see Ref. 131). The axial force L 
and moment M a t  those spanwise integration station's w i l l  be described and 

evaluated i n  the+ next subsection. 

nent t o  the improved formulation. 

Note tha t  {p) and [hl are quant i t ies  perti- 

In  the conventional formulation, the variation of the work of the axial 
stress, & V I  is expressed i n  terms of displacements, and the p l a s t i c i ty  e f fec ts  

are taken in to  account through the  use of "effective p l a s t i c  loading". 

formulation w i l l  be described i n  the following: 

This 

By subst i tut ing the re la t ion  
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(4.38) 6 = € ( E - €  P = E ( E ~ * < K  - E ' )  

into E q .  4.35 one has 

6-u = (II E (Eo+ < k -&') 8 E, + 5 A d L', (4.39) 

v, 
Employing the strain-displacement relation, E q .  4.24, Eq. 4.39 becomes 
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I n  Eqs. 4.40b and 

the ith time step. Thus 

4.40~. 8 is the  t o t a l  plastic s t r a i n  a t  the end of 

+, i-t 
I, = E  

m= I 
(4.41) 

and the integrations along the length of the beam element are a l so  performed 

numerically. The plastic s t r a i n  increment, A E ', and the  integration of the 

t o t a l  plastic s t r a i n  E: over the cross section, A,  of the beam a t  those span- 

w i s e  integration s ta t ions w i l l  be described next. 

i 

4.3.4 Stress-Strain Relations 

Because of nonlinear material behavior, although the  s t r a i n  variation 

through the beam thickness, by the Bernoulli-Euler hypothesis, is l inear ,  the 

variation of stress across the thickness may be nonlinear. For computational 

convenience, the stresses are evaluated a t  selected Gaussian points across the 

thickness, and the corresponding weighting factors  are used i n  evaluating the 

pertinent integrals  by Gaussian quadrature. The strain-hardening behavior of 

the material may be accounted fo r  by using the mechanical sublayer model i n  

which the material a t  each Gaussian s t a t ion  is treated a s  consisting of equally- 

strained sublayers of elastic, perfectly-plastic material, with each sublayer 

having the same elastic modulus but an appropriately different  yield stress, 

as described i n  Appendix A. 

It should be noted that within the  framework of the Bernoulli-Euler 

beam theory, although the transverse shear s t r a i n  y is zero, the  transverse 

shear stress 'I, is nonzero. With the presence of both axia l  stress U, and 

transverse shear stress T, the Mises-Hencky yield function may be writ ten as 

2 2 9 = o -  + 3 2 1  - q k  = o  (4.42) 

where Uok is the yield stress of the idealized elastic, perfectly-plastic kth 

sublayer i n  the uniaxial-tension engineering stress-strain diagram (see 
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Appendix A).  

and p l a s t i c  s t r a ins  w i l l  not function properly, i f  the yield function ( E q .  4.42) 

is used. (Because i n  tha t  process, the transverse shear stress T, should be 

evaluated from a t r i a l  value of T by assuming tha t  the AT 
elastic behavior of &, but Ay is always zero and hence T is a lso  zero). To 

avoid an unduly complicated analysis, and still  achieve good accuracy, and also 

because the transverse shear stress,'c, often may be small compared with the 

axial stress Q, (Ref. 20) ,  the following yield function is  adopted fo r  the 

The process presented i n  Subsection 3.3.2 of calculating stresses 

arises from wholly- 

present BernouLli-Euler-type beam 
2 

% = o  -6k = o  2 
(4.43) 

Howevere the yield fmct ion  (Eq. 4-42) is used fo r  the Timoshenko-type beam 

where both the axial and transverse shear stresses and s t ra ins  are taken in to  

account; this w i l l  be described i n  the next subsection. 

An i l l u s t r a t ion  of the method of computing the ax ia l  stress and/or 

p l a s t i c  s t r a i n  increment is presented as follows. One begins by knowing the 

sublayer s t r e s s  0 a t  time t for  the kth sublayer of the jtla depthwise 

Gaussian s ta t ion,  and the s t r a i n  increment A& j,i  a t  s t a t ion  j a t  time t 

( tha t  i s ,  the  s t r a i n  increment from time t 

t r ia l  value (superscr iptT)  of Q which is computed by assuming an e l a s t i c  

path+ : 

j k r i - l  i-1 

i 
to time ti). one then takes a i-1 

j k , i  

+ E ~ E j > i  
T 

(4.44) 

A check is then performed t o  see what the correct  

I f  

I f  

where E is Young's modulus. 

This procedure is applied to  a l l  sublayers 

must be. j k , i  value of IY 

P 
1 )  

and A d . k  1' = 0 

of each Gaussian s ta t ion  j ;  

+ 
It should be noted tha t  the subscripts i n  quant i t ies  such as 0 

represent only identifying labels ,  not tensor notation as used heretofore. 

fo r  ,example, jk,i-1' 
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having done this, the axial force and mment of the  beam cross section can be 
determined by 

section of the beam element can be determined by 
P 

(5 €,!'h Air, 
(4.47) 

((E t d A =  b Z  h Z ( 5 E j k  A ~ I ;  1 
A 7 
( ( p f d A t  hk Z 
A 1 

where b is the width and h is the thickness of the beam and A is a combina- 

t ion  of the mechanical sublayer weighting factor and the Gaussian weighting 

factor W;, which is defined by 

j k  

In 

is 

be 

c 

~ q .  4.48, W .  is the Gaussian weighting factor  (Ref. 131) 
3 - - q-, 

E, - f+ I k - 1  

(4.48) 

(4.49) 

the k t h  slope of the polygonal approximate s t ress-s t ra in  diagram. 

verified t h a t  the relat ions . 

I t  can 

If desired, the sublayer yield stresses may be t reated as st rain-rate  

Since the s t r a i n  increment a t  the jth Gaussian station and hence dependent. 

the s t r a i n  rate is known a t  this stage of computation, then the rate-dependent 

yield stress U of this k th  sublayer a t  s ta t ion  j is 
Yk I 

where D and p are empirically-determined constants for  the material 

and may, i n  general, be di f fe ren t  for  each sublayer. 

is the s ta t ic  uniaxial yield stress of the kth sublayer 

a t  any jth Gaussian s t a t ion  

IJ ok 
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4.4 The Timoshenko-Type Curved Beam Element 

4.4.1 Displacement Field 

I n  the previous subsection, the derivation of the beam element properties 

is based on the Bernoulli-Euler hypothesis i n  which the transverse shear deforma- 

t i on  is assumed t o  be zero. 

general curved beam element with nonzero transverse shear deformation taken 

i n to  account (termed a Timoshenko-type beam element) w i l l  be presented. How- 

ever, the following assumptions (Ref. 159) are used: plane cross sections per- 

pendicular t o  the undeformed centroidal axis remain plane and suffer  no s t r a in  

i n  the i r  plane, although they no longer remain perpendicular t o  the deformed 

centroidal axis. 

In  the present subsection, the formulation for  a 

With these assumptions, the displacernent f i e ld ,  including transverse 

shear deformation of the beam may be specified by the  middle plane displace- 

ments and cross-section rotat ion,  as  follows: 

7 ( ? , < I  = v q 1 t - 5  e ( ? ’  - 
w ‘ 7 . ’ ;  1 = w c p  (4.51) 

where v(q) = axia l  displacement of the middle plane 

w(q)  = transverse displacement 

8(n) = rotat ion of the plane cross section about the x axis  

5 = normal distance from the centroidal axis (middle plane) 

4.4.2 Strain-Displacement Relations 

Neglecting the var ia t ion of the transverse shear s t r a i n  across the 

thickness of the beam, the expression fo r  the engineering components of the 

s t r a i n  d is t r ibu t ion  may be writ ten as 

E q l , 5 )  = Ee ‘1’ + 5 K q ’  

-7 (1‘ 51 = -Yo ( 7 )  
(4.52) 

where Eo is the middle-plane axial s t r a i n  

K is the curvature change 

yo is the transverse shear s t r a i n  
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The strain-displacement re la t ions of the curved-beam element may be 

expressed as 

(4.53) 

In  th i s  equation also,  the only nonlinear term retained is due to the rotat ion 

of the centroidal axis about the x axis. 

matrix form as 

Equation 4.53 may be expressed i n  

4.53a 

It should be noted that i n  the previous Bernoulli-Euler-type beam ele- 

ment, the highest derivatives upon which the s t r a i n  depends are the second 

derivative of the transverse displacement, w, and the f i r s t  derivative of in- 

plane ax ia l  displacement, v. 

polation function be admissible i n  the var ia t ional  argument of %. 3.3, it is 

required tha t  the assumed displacement function of w a t  least possess a second 

derivative and v possess a f i r s t  derivative; t h i s  means tha t  the assumed dis- 

placement f i e l d  must generate continuous displacements and continuous normal 

slopes a t  the interelement nodes. 

deformation reduces the order of the derivative requirement and hence also the 

the stringency of the compatibility imposed on the assumed displacement f i e l d ,  

because the s t r a ins  depend only on the f i r s t  derivative of displacements v,w 

and the ro ta t ion  8. For the var ia t ional  argument of a. 3.3 t o  be defined, 

In  order that the assumed displacement inter-  

However, the inclusion of transverse shear 
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it is required tha t  the assumed displacement f i e ld  have a t  l ea s t  a f i r s t  deriva- 

t i ve  and provide continuous displacements ana rotat ions a t  the interelement 

n d e s .  Consequently, the simplest assumed displacement f i e l d  for  t h i s  Timoshenko- 

type beaxil element w i t x i  the rigid-body displacement modes included is  

(4.54) 

The generalizkd nodal displacements {q} are  defined t o  bd the three degrees of 

freedorz. v, w, and 8 a t  eacn node of the element as follows: 
T 

-! 8 1 = L  ' / A .  w*- 0,. v,i+, W1.4-i O A L ,  _I (4.55) 

In  a manner similar t o  tha t  described i n  the previous subsection, one 

may w r i t e  

Cglr = IAJ W (4.56) 

and 

(4.57) 

It perhaps should be mentioned tha t  by t h i s  l inear  interpolation function 

(Eq. 4.54) of the displacement, the s t r a i n  and moment representation w i l l  be 

very crude unless the element s ize  is kept s m a l l  enough, since as can be seen 

i n  t h i s  fornulation, the bending s t r a i n  is constant over each individual ele- 

ment. In  order t o  improve the s t r a i n  representation, higher order displace- 

ment interpolation functions and hence more degree of freedom (or internal  

nodes) should be used (see Kef. 164). Further uiscussion of t h i s  matter is 

given i n  Subsection 5.2.2. 

culation procedure, the l inear  interpolation function is discussed here. 

However, for  the purpose of i l l u s t r a t ing  the cal- 
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where 

where 

Also, the strain increments from time ti-1 to time t. are given by 
1 

4.4.3 The Discrete-Element Property Matrices 

The element m a s s  matrix and the element generalized nodal forces can 

be obtained following the same argument as i n  the previous subsection. Also, 

i n  addition to L and M, the transverse shear force,  S ,  of the cross section, 

A, is  given by 

(4.60) 
A 

where T is the transverse shear stress. 

Then, from the Principle of Virtual Displacements equation, Eq. 3.14, 

one may obtain for the improved formulation: 

(4.61) 
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where 

A l s o ,  for the conventional formulation: 

where 

Finally, one can recast Eqs. 4.61 and 4.62 in terms of global generalized 

displacements is*) to obtain the corresponding equations of motion as described 
in Subsection 3.2. 

95 



4.4.4 Stress-Strain Relations 

For this Timoshenko-type beam element with transverse shear deformation 

included, the calculation of stresses and stress resul tants  f o r  both normal 

and transverse shear components is i l lus t ra ted  as follows. 

One begins by knowing the sublayer normal stress 0 and transverse jk,i-1 
shear stress T 

Gaussian s ta t ion  (layer) and the jth layer normal and transverse shear serain 

increments A€ and by ., respectively, a t  time t The tr ial  stresses are 

calculated from the relations 

a t  time ti-l for  the kth sublayer of the jth depthwise jk  , i-1 

j ,i j ,i i’ 

Then, the t r ia l  stresses are introduced i n t o  the Mises-Hencky 

where E is Young‘s modulus of e l a s t i c i ty  

G is shear modulus of e l a s t i c i ty  

and U is the yield stress of the ok 
plastic kth sublayer. 

T 
I f  9. 5 0 ,  the  stress state 

flow occurs within t h i s  time step, 

wholly elastic behavior, then 

1 

and 

(4.63) 

yield function 

(4.64) 

idealized elastic perfectly- 

lies within the yield surface,  no plastic 

and the actual  stress increments arise from 

(4.65) 

T 
1 

I f ,  on the other hand @. > 0 ,  plastic yielding has occurred. Then, the flow 

rule ,  Eq. 2.82a gives the plastic s t r a i n  increments as 
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and the actual stresses are 

(4.67) 

c 
where A* = 2A and can be solved from the requirement that  the actual stress 

state must be on the yield surface. 

s a t i s f i ed  : 

Thus, the following condition must be 

(4.69) 

Substi tuting Eq. 4.68 i n t o  Eq. 4.69, one may solve for  A* as follows: 

(4 .70)  
C &* = 

B+ JBL-AC' 
where 

(4.70a) 

With A* obtained, the stress state a t  time t. an6 the plastic s t r a i n  increment 

from time t to t. are known. This process m u s t  be carried out  f o r  each 

layer (i.e., depthwise Gaussian s t a t ion  and sublayer), Once the  stresses i n  

each layer and sublayer have been determined, the axial force,moment, and trans- 

verse shear force of the cross section can be obtained by 

1 

i-1 1 
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L = b F  E (  q k  A i &  1 
1 

7 ' 1  k 1  
h f\/l k b T  E<- ( Z F . k A j k )  

E ( E  ~ f k  A i &  I (4.71) 
s t b -  h 

2 2  k 
and the integration of the plastic strain over the cross section can be ob- 

tained by 

[ ( ~ ~ d f t  '= b T h E 

(i 7/ P d A = b ~ ~ ( L Y + A ~ ~ )  /I 

I k  E/k A i k )  
A 

A 9 
=bF 1 1  51. ( Z  k j  E . k  A,L I 

(4.72) 

Then the equilibrium equation, Eq. 4.61 or Eq. 4.62, must be used next in the 

calculation cycle to find the displacement or displacement increment of the 
next time cycle, as discussed in Subsection 3.3.1. 

P 
P I' k 
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SECTION 5 

EVALUATION AND DISCUSSION 

5.1 Introduction 

In Section 4, the curved beam element, which may undergo large deflec- 

t ions and elast ic-plast ic  s t ra ins ,  as w e l l  as deforming such as e i the r  t o  in- 

clude o r  omit transverse shear deformation, has been developed fo r  the dis- 

placement var ia t ional  model. The t i m e w i s e  nume!rical 3-point central-difference 

finite-difference procedure is employed to  solve the resul t ing system of coupled 

second-order ordinary d i f f e ren t i a l  equations. 

In  order t o  evaluate the accuracy and ve r sa t i l i t y  of the present finite- 

element formulation and solution scheme, t h i s  analysis has been implemented i n  

a computer program and several  numerical examples have been carried out. F i r s t ,  

i n  Subsection 5.2, comparisons are  made between the present finite-element solu- 

t ions and known analyt ical  solutions for  small-deflection l inear-elast ic  tran- 

s i en t  responses of mechanically-loaded beams. Next, i n  Subsection 5.3, the 

present predictions are compared with those from available finite-difference 

(both spa t i a l  anci temporal) predictions and with experimental observations for  

large-deflection, e las t ic-plast ic  t ransient  responses of impulsively-loaded 

beam and ring s t ructures ,  and various features of the present method are 

assessed. 

5.2 Small-Deflection Linear-Elastic Transient Responses 

of Mechanically Loaded Beams 

In  order t o  check on the proper functioning and correctness of the 

present analysis and computer program, the small-deflection l inear-elastic 

t ransient  responses of beams have been analyzed f i r s t ;  the finite-element pre- 

dict ions nave been compared w i t h  available analyt ical  solutions. Two beam 

probler,as have been studied: one pertains t o  Bernoulli-Euler (or Kirchhoff) 

deformation behavior while the other includes a s ignif icant  amount of transverse 

shear deformation. These examples are  discussed i n  the following. 
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with Bernoulli-Euler-Type Defomation Behavior 

A simply-supported beam is subjected t o  a uniform lateral t ransient  

loading over the whole span. The geometry, crimensions, material properties,  

and transient-loading history are  depicted i n  Fig. 6. The Bernoulli r- 
type small-deflection elastic beam element with a l inear  intetpolat ion function 

fo r  the axia l  displacement v and a cubic interpolation function for  the trans- 
verse displacement, w, w a s  employed; t h i s  element has been termed an IC element 

i n  Section 4. 

modeled; f i ve  equal-length discrete  elements w e r e  used i n  the attendant f in i te -  

element analysis. 

ence timewise integration method with a time increment size of A t  = 4 psec which 

s a t i s f i e s  the s t a b i l i t y  c r i te r ion ,  A t 2  (2/w-), for  t h i s  method (see Ref. 148) 

where w 

model, [M](q*) + [K]{q*} = 0 which approximates the actual l inear  elastic s m a l l  
deflection structure. 

Because of symmetry, only one-half of the span of the beam was  

The solution w a s  obtained by using the  3-point central-differ-  

represents the la rges t  natural frequency contained i n  the mathematical 
max 

A comparison of the mid-span transverse deflection response predicted by 

using the present finite-element scheme with the exact normal-mode solution is 

shown i n  Fig. 6. It is seen tha t  very good agreement between these solutions 

is observed. I t  should be noted tha t  fo r  t h i s  small-deflection l inear-elastic 

s t ra ignt  beam with Bernoulli-Euler deformation behavior: (1) the inplane 

(axial)  displacement is zero and ( 2 )  the selected assumed cubic displacement 

function for  the transverse displacement w is, i n  fac t ,  i a e n t i c a l  w i t h  the / 

exact displacement f ie ld .  Hence, the finite-element calculation wliicn u t i l i ze s  

the central-difference t i m e  integration method gives very accurate amplitude 

an6 phase predictions for  small-clef lection l inear-elast ic  behavior as long as 

the time increment size used is small enough t o  sa t i s fy  the s t a b i l i t y  cr i ter ion.  

5.2.2 Small-Deflection Linear-Elastic Transient Responses 

of a Beam with Timoshenko-Type Deformation Benavior 

The second example is selected t o  test the convergence of predictions 

u t i l i z ing  the various assumed displacement functions for  the Timoshenko-type 

beam element when it is applied to a small-deflection l inear-elast ic  dynamic 

system. Transverse shear deformation and rotatory ine r t i a  e f fec ts  are included 
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i n  the formulation. 

centrated a t  the mid-span with a triangular pulse t i m e  history ( th i s  problem 

has been analyzed i n  Ref. 165). 

less parameters for  t h i s  problem. 

A free-free beam is subjected t o  an applied loading con- 

Figure 7 gives the geometry and the dimension- 

Because of symmetry, only a half-span of the beam was t reated i n  the 

finite-element solution. 

integration scheme 

s i ze  AT = 0.0025 w a s  used, where AT = At 
t ha t  this integration operator is unconditionally s table  for  l inear  (small- 
deflection) e l a s t i c  dynamic systems; however, too large a AT may cause some 
phase s h i f t  from the correct  behavior. 

The Newmark constant average acceleration timewise 

/a2. It should be recalled 

+ (Y = 1/2, 6 - 1/41 with a dimensionless t i m e  increment 

For t h i s  beam problem with a s ignif icant  amount of transverse shear ae- 

formation, the following four types of assumed displacement f i e lds  (designated 

as T1 through T4) have been tes ted [note tha t  zero inplane displacementsv are 

involved -- V is ignored) : 

(T1) Linear functions i n  for  both transverse displacement w,  and 

rotation 8: 

w = a ,  + a , <  
e 

The generalized 

are two degrees 

of the element: 

(T2) Cubic variation 

= R, -+ a, 5 
coordinates {q) are selected such tha t  there 

of freedom (w, 8) a t  each end node i and i+l 

of w and l inear  variation of transvexse 

c3: shear s t r a i n  y 

- a w  + e  = a, +Q,c k - B g  

(5,la) 

(5.2a) 

+ 
This operator ra ther  than the 3-point central-difference operator w a s  employed 

i n  an attempt t o  use  a larger  AT than the l a t t e r  permits, and thus reduce the 
computing t i m e .  
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Three degrees of freedom (w, 8)  are selected at each end 

node of the element and the generalized coordinates are: 

The reason for choosing the linear function for the transverse 

shearing strain (i-e., quadratic function of the rotations) is 

that b e  bending effect aominates the transverse shearing ef- 

fect when the element size is large, and the bending strains 

are derivatives of the rotation. Accoroingly, this function 

could represent the strain energy of the element more accurately 

for a large mesh size (Ref. 164). 

(T3) Tile same assumed displacement functions as for T2 (i.e., with a 

) except that cubic variation of w and a linear variation of y 

the generalized coordinates are selected such that there are 
two degrees of freedom (w, 8) at tne two end nodes and at a 

midpoint node of the element. Thus, 

a 

w = a ,  + a, 5 + o3 5’ + a4 r3  
= a5 + a, 5 (5.3a) 

and 

ss: (T4) Quadratic variation of w and linear variation of y 

Two degrees of freedom (w, 6) at the two end nodes and one 
Cegree of freedom, w, at the midpoint node of the element are 
selected. The generalize6 coordinates are 

(5.4a) 
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Shown i n  Fig. 8 are the corresponding dimensionless transverse shear 

force responses preuicted a t  tne quarter-span s t a t ion  by using the four differ-  

en t  sets of assumeu uisplacement functions (T1 tnrough T4) with various numbers 

of discrete elements fo r  the half span. Shown a l so  are the "exact" modal solu- 

t ions of Kef. 165 based on tne Timosnenko assumption fo r  convenient comparison. 

I t  is seen t h a t  the  use of l inear  interpolation functions for  both w and d (T1) 

gives very crude coarse-mesh transverse shear force responses compared with tha t  

front the modal solution. 

oruer interpolation function (T2, T3, and T4) with a coarse-mesh f in i t e -  

element array show be t t e r  agreement with tne modal solution than the predictions 

by using l inear  interpolation function (TU. However, as tne  number 

of f i n i t e  elements employed increases (the element s i ze  decreases), a l l  four of 

these interpolation-function predictions converge to  tho modal solutioii both 

i n  pliase anu i n  amplitude. I f  one bases the comparison on the t o t a l  number of 

degrees of freecom (unknowns) which w e r e  used i n  the finite-element solutions, 

it is seen tha t ,  fo r  a given number of unknowns, the predictions obtainea by 

using T2 o r  T4 type interpolation-function elements leads t o  a solution which 

is closer t o  the modal solution than is the  case i f  T1 or  T3 type interpolation 

function elements are employed. The reason for  t h i s  comparative behavior is 

thar i n  the T1 type (l inear) interpolation function, the s t r a i n  anci moment 

representation over cacn element are very crude; wnereas i n  T2, T3, and T4 type 

interpolation function elements, the s t r a i n  and moment representation is much 

inlproved over tnat with the T1 type element. Also, by using T3 type elements, 

the mesh s i ze  is relat ively larger  compared with t h a t  from using T2 or  T4 type 

elements i f  they have tne same number of degrees of freedom fo r  the half-span 

of the beam. Finally,  it should be noted tha t  the  s ize  of the f i n i t e  elements 

whicn provicie good shear response agreement with the  exact solution are such 

that their (equal) length is  less than the depth of the beam (see Fig. 8) --- 
such a required rnocieling pertains t o  problem which include transverse shear 

anrl rotary iner t ia .  

Whereas, predictions obtained by using tne higher- 

It  perhaps siiould be noted tiiat under various loading conditions, slope 

discontinuities along interelement boundaries a re  permitted when considering 

the presence of transverse shear deformations; thus, the T2 type element 
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over-constrains t m  continuity of slope a t  the interelement nodes. 

t n i s  consideration, it may be concluded tna t  the T4 type assumed-ciisplacement 

functiou is the most e f f i c i en t  one and the T2 type assumed displacement func- 

t ion comes next, wnen they are apulieu to beans witn transverse shear aeforma- 

t ion benavior. 

Based on 

The finite-element predictions f o r  the quarter-span moment responses and 

tne midspan deflection responses are shown i n  Figs. 9 and 10, respectively. 

The above-mentioned convergence behavior of the shear-force responses obtained 

by employing the four types of assumed displacecicnt functions are also observed 

i n  both of tnese latter two figures f o r  the moment and displacement responses. 

This example i l l u s t r a t e s  tha t  the linearly-varying (T1) assumed displace- 

ment Thoshenko-type beam f i n i t e  element can provide accurate transient response 

predictions only i f  the element s i ze  is kept small enough. However, i n  ordex 

t o  obtain more accurate coarse-mesh solutions, one would need (a) t o  employ 

iiigner-order assumeu displacenent functions (T2, T3, T4)  o r  (L) t o  use a;; 

assu'ieu stress nybrid finite-element moael (Ref. 166) . 
5 . 3  Large-Lkflection E l a s t i c - P l a s t i . r a n s i e n t  Responses 

of Impulsively-Loadeci Simple Structures 

I n  order t o  evaluate the r e l i a b i l i t y  and accuracy of the present f in i te -  

element metnod for  predicting large-deflection elast ic-plast ic  transient re- 

sponses of simple structures,  the various features an6 options of the present 

preuiction metood are examined i n  t h i s  subsection. A l s o ,  comparisons of the 
present preuictions with other available finite-difference (both spa t i a l  ana 

temporal) preuictions (Ref. 44) and with experimental observations (Refs. 44, 

167 and 16U) are  made. 

5.3.1 Zxample Problems Analyzed 

As examples with which the various features of the present f in i te -  

element prediction method can best be i l l u s t r a t eu ,  tne following three types of 

problems havc been analyzed; the geometries and the types of f i n i t e  elements 

employeu are presented i n  Fig. 11 for  reference convenience. 



(1) A straight beam of 60Cl-TG aluminum alloy is clamped at 

each end and has dimensions: 1/8-in. thickness, 1.2411. 
width and 10-in. span between supports. The bean is 
loadeu impulsively over a spanwise segnent centered at 

the midspan anu covering a length of 2 inches, as de- 

picted in Fig. lla. 

A 6061-T6 aluminum alloy ring sector with a subtended 

angle of 315O is clamped at each end and has dimensions: 

2.935 in. mean radius, 0.123-in. thickness, 1.197-in. 

widw. The clamped ring is loaded explosively over a 
peripheral sector of 120° of its exterior, as shown in 
Fig. llb. 

(2) 

(3) A free circular 6061-T6 aldnwi alloy ring, 0.124-in. 
thick, 1.195-in. wide, an4 2.937 in. mean raaius is 
subjectea tu severe explosive loading over a peripheral 

sector of 120° of its exterior, as shown in Fig. llc, 

As a matter of convenience for reducing the computer time and storage 
required by the solution of these problems, these three examples were treateci 

as symmetrical problems. Taking account of the symmetry of the impulsive 
loading, geometry, and boundary conditions, only half of each configuration 
was modeled in all of b e  attendent discrete-element analyses. 

5.3.2 Effects of Using Various Timewise Integration 

Operators: Central-Difference Method, Houbolt's 
lyethod, and Newmark's fj-blethod 

In this subsection, the numerical. stability behavior of the timewise 

integration operators: central-difference method, Houbolt's method and Newmark's 

6-method (y = 1/2, 6 = 1/4) when employed for the solution of large-deflection 

elastic-plastic transient responses of hie impulsively loaded clamped bean will 
be studied. The conventional finite-element formulation of the equilibrium 

equations is used, where the large-deflection and elascic-plastic effects are 

accounted for through the .  use of "equivalent generalized forces" wnich are given 
automatically fro= the variational formulations. 
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To minimize the computer t i m e  f o r  the s t ructural  response calculations, 

one should use the largest  permissible time increment which w i l l  avoid numeri- 

cal in s t ab i l i t y  (for example, roundoff e r ro r  blowup o r  truncation error  accumu- 

la t ion)  and still provide a rel iable  prediction. Unfortunately, for  the 

present nonlinear dynamic system, a reliable and validated cr i ter ion by whicn 

tile proper t h e - s t e p  s i z e  can be chosen a p r i o r i  is not readily available for  

any of these methods. 

I f  the 3-point central-difference ( t i m e w i s e )  method is  used, as was 

pointed out i n  Subsection 3.3.4, the judicious selection of the proper t i m e  

increment A t  can be guided by the s t a b i l i t y  c r i t e r ion  of a corresponding Linear 

dynamic system, A t  < 2/wmax, a s  an i n i t i a l  selection; numerical experimenta- 

t ion  then subsequently can provide the suitably smaller A t  t o  insure s t a b i l i t y  

where w represents tl-re largest  natural  frequency i n  the mathematical moael, 

[MI {:*I + [K]{q*} = 0,  which approximates the actual ( l inear-elastic s m a l l -  

deflection) structure. Thus, it would be very valuable t o  know w such t h a t  

tne “suitable i n i t i a l  A t ”  can be chosen immediately and hence reduce the amount 

of subsequent numerical experimentation. Figure 12a presents w of the 

clampeci beam as a function of the number of elements per half span; the 

Uernoulli-Euler-type LC beam element with a consistent mass matrix is used t o  

moael the structure.  The maximum w w a s  obtained by an i t e r a t ion  process i n  

double precision applied t o  (see A r t .  4.5 of Ref. 27) : 

C P  - 

max 

raax ’ 

IElX 

(5.5) 

A l s o  shown i n  Fig. 12a are the m a x i m u m  frequencies of pure membrane behavior 

and pure bending behavior (with o r  without including the rotatory ine r t i a  

e f f ec t ) .  It  is seen t h a t  the m a x i m u m  frequencies of combined membrane and 

bending benavior are equal t o  the pure membrane maximum frequencieswhen the 

mesh s i z e  E, to thickness, h, r a t i o  i s  large (&/h 41, and are equal t o  the 

pure bending m a x i m u m  frequencies when the mesh s i ze  t o  thickness r a t i o  is 

small (E/h f 4). 

beam system, because membrane and bending e f f ec t s  a re  decoupled. It  is also 

noticed t h a t  the rotatory i n e r t i a  e f f ec t  ar is ing from the consistent mass 

matrix can be s ignif icant  when the  mesh s i ze  is small, and the neglect of 

This is to be expected f o r  the l inear  Bernoulli-Kirchhoff 
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rotatory ine r t i a  by deleting those terms from the consistent mass matrix leads 

to  a maximum frequency higher than tha t  obtained by including th i s  rotatory 

i n e r t i a  e f f ec t  (as seen i n  Fig. 123) .  

It  should be noted tha t  simple analyt ical  methods t o  estimate the upper 

bound and thc lower bound of w have been presented, for  example i n  Ref. 162, 

i n  terms of the maximum eigenvalue of a l l  the individual element matrices and 

its associated eigenvector: 

m a x  

2 2 < max (L), W a f  1 + Z ' L X J  [k,]  { x * ]  

I +  t ' L X * J  [m,,]]x? (5.6) 6 %Elx 

2 2 .  where max(Vn) denotes the la rges t  V2 of a l l  the f i n i t e  element m d  V is the 

maximum eigenvalue of t h e  equation 
n n 

{IC*) is the eigenvector of Eq. 5.6a fo r  the element j ,  
2 

and C' indicates summation over only the neighboring 

which has max (v,), 

elements of element j. 

The element matrices [n ] and [k ] involve fewer degrees of freedom than n n 
the assembled matrix [MI and [K], so it is relat ively much easier  t o  find the 

element's maximum eigenualue than the w 

the complete structure.  However, the bounds may not be very sharp; a lso the 

boundary conditions (which the c i ted  "bound method" does not take in to  account) 

and the na ture  of the problem w i l l  a f fec t  the w 

the upper and lower bounds of the max imum frequencies of pure beam bending 

behavior (by using consistent mass matrices from which are  deleted the rotatory 

ine r t i a  e f fec t )  are given by (Ref. 162): 

of the assembled matrix representing max 

as  shown i n  Fig. 12b where maX 

+ 

where p is the mass per uni t  length and E is the element length. In  view of 

+ 
S i m i l a r  bounds could be developed when one uses lumped mass natr ices  such as 

those discussed in  Subsection 4.3.3. 
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the wide bounds given by these r e s u l t s  and i n  oruer t o  reduce the e f for t  in- 

volved i n  subsequent numerical experimentation t o  determine a maximum permissible 

A t ,  the exact w has been evaluated i n  the present analysis; fortunately, 

fo r  the beam (or ring) problem, the t o t a l  degrees of freedom are not too many 

t o  be handled by the scheme represented by Eq- 5.5. However, fo r  problems with 

an enormous number of degrees of freedom, one would perhaps need to  resor t  to 

the simple analytical  bound methods t o  estimate the upper and lower bounds of 

w - for  such cases, the "bound schme" may be more economical and eff ic ient .  

Now, turning t o  the large-deflection elast ic-plast ic  t ransient  response 

predictions, the half-span of the beam is modeled by 10 elements and the time- 

wise 3-point central-difference operator i s  used. The c r i t i c a l  A t ,  i f  based 

on the s t a b i l i t y  c r i te r ion  of a corresponding l inear  system would be 

A t c 2  = 2/um = 1.47 psec. 

using various time s tep  sizes as shown i n  Fig. 13a to  predict  the midspan de- 

f lect ion responses. This c lear ly  demonstrates the immediate divergence of the 

predictions i f  A t  is only s l igh t ly  greater than A t c l l ( A t  = 1.5 psec = 1-02 x A t c R ) ;  
r e l iab le  predictions are obtained i f  A t :  0.99 x A t C L  = 1.45 psec. 

also have been carried out by using Houbolt's method and Newmark's method as 

shown i n  Fig.  13b and 13c. respectively; it is observed for  both of these 

methods tha t  for  A t  values which are  too large,  the predictea response degrades 

gradually but badly from the correct  behavior. The c r i t i c a l  A t  for  re l iable  

predictions w a s  found t o  l i e  between 6 anu 8 psec for  Houbolt's method and be- 

tween 3 and 4 psec for  Newmark's method. 

max 

max' 

Computational experiments have been carried out 

Calculations 

In  view of these resu l t s  and those of Refs. 55, 73, and 156, it is con- 

ceivable tha t  the following s i tuat ion may generally be considered t o  be true.  

The introduction of material nonlinearity often decreases the highest natural  

frequency of the system because the p l a s t i c  pulse travels a t  a veloc'ity which 

is less than the e l a s t i c  pulse velocity,  but e l a s t i c  response contributions 

are st i l l  present and govern the allowable A t .  However, the geometric non- 

l inear i ty  e f fec t  ( large deflections) renders Houbolt's method and Newmark's 

method no longer to be "unconditionally stable". 
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It should be remembered that f o r  t h i s  beam problem the calculation of 

s t r a i n  increments from displacement increments and displacements, Eq. 4.25, a t  

any time t is given by m 

where 

(5.7) 

2 
m The higher-order term 1/2(aAw/a?) 

The predictions made by neglecting th i s  term i n  the calculation of the s t r a i n  

increment are shown i n  Figs. 14a, 14b, and 14c f o r  the central-difference me- 

thod, Houbolt's method, and Newmark's method, respectively. Comparing Fig. 14 

with Fig. 13, it is seen that the neglecting of t h i s  higher-order term may de- 

grade the long-time responses due to the accumulation of "errors of approxi- 

mation" introduced a t  each time step,  especially f o r  larger  A t  as can be seen 

more p r d n e n t l y  i n  the predictions obtained by Houbolt's method and Newmark's 

method. Accordingly, it is reconmended t h a t  the exact strain-increment equa- 

t ion  (J3q. 4.25) including a l l  the l inear  and nonlinear terms i n  the displace- 

ments and the displacement increments should be used; fortunately 

the computer time and storage increase is insignificant.  

has been included i n  the above calculations. 

It  should be noted tha t  Houbolt's method and Newmark's method are  im- 

p l i c i t  i n  nature: t ha t  is, the generalized nodal forces (which may be due t o  

large-deflections and elast ic-plast ic  e f fec ts )  a t  each time step depend on the 

displacements (or stress, s t r a in )  a t  t ha t  time step, which remain to  be de- 

termined; thus, i t e r a t ion  o r  extrapolation is needed a t  each time step. Linear 

extrapolation (see Ref. 7 5 ,  fo r  example) by using the generalized nodal forces 

a t  two previous t i m e  steps is employed i n  the present calculations. 

difference method on the other hand is explicit i n  nature and thus no i te ra t ion  

o r  extrapolation is required a t  each time step. 

The central-  

The storage of the displacements 
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at three previous time steps is required by Houbolt's method but information 

only at two previous t i m e  steps is needed when the 3-point central-difference 
method or Newmark's method is used. Also, for At values which are too large, 

the very gradual degradation of the responses predicted by using Houbolt's 

method or Newmark's method gives no warning to the analyst that this degrada- 

tion may be happening. However, the central-difference method usually exhibits 

a violent degradation of response when At is too large, thus warning the analyst 

of this state of affairs. 

+ Based on these considerations , only the timewise central-difference 
method is employed in the following example calculations. However, it should 

be mentioned that based on the present information, it is still far from con- 

clusive as to whether any one timewise operator is superior to the others for 
analyzing nonlinear transient response problws of the present type. 

5.3.3 Caparison of the Conventional Formulation Versus the 

Improved Formulation for the Dynamic Equilibrium Equations 

By using the timewise 3-point central-difference method, comparisons 

have been made of the responses of the impulsively-loaded clamped beam ob- 

tained by employing the conventional finite-element formulation with those ob- 

tained by using the improved finite element formulation of dynamic equilibrium. 

Complete agreement of these predictions is observed in Fig. 15 for both the 

large-deflection elastic-plastic transient responses and the small deflection 

linear-elastic transient responses. However, as was discussed in Subsection 3.3, 

the improved formulation shows significant simplification in form over the con- 

ventional formulation for solving large-deflection elastic-plastic dynamic equi- 

librium behavior. Also, the computer storage and manipulations required for the 

improved formulation are less than those required for the conventional formula- 

tion. 

formulation, the computer time is about 24% more than that required when the 

For this problem, it has been found that when using the conventional 

+ Also in order to make convenient comparisons, because in the available inde- 
pendent finite-difference (both spatial and temporal) predictions involving 
large-deflection elastic-plastic behavior (Ref. 44), the timewise central- 
difference method is used. 
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improved formulation is used. Based on these considerations, 

fornulation w i l l  be used i n  the following further example cal 

deflection elast ic-plast ic  s t ruc tura l  t ransient  responses. 

The free r ing has been analyzed by using the Bernoulli-Euler type of 

Shown i n  ring element with e i ther  CC o r  LC assumed-displacement functions. 

Fig. 16a is the maximum natural  frequency w for  the l inear  behavior of the 

finite-element representation of the r ing as a function of the number of ele- 

ments per half r ing.  

assumed-displacement elements has a larger  w 

t i m e  s tep Atc l l  = 2/umx) than tha t  occurring when the LC assumed displacement 

elements are used. 

max 

I t  is seen tha t  fo r  the same mesh size, the use of CC 

(hence requires a s m a l l  c r i t i c a l  
maX 

The ring centerline separation time his tor ies  predicted by 

using CC assumed-displacement elements compared with tha t  predicted by using 

LC assumed displacement elements are shown i n  Fig. 16b, where the ring material 

is  consicierecl t o  be Gastic l inear-s t ra in  hardening (EL-SII) . 
observed response is also shown fo r  convenient comparison. It  is  seen tha t  as 

the s t ructure  is modeled as more and more f inely subdivided, the LC element so- 

lutions converge and provide a s o m e w h a t  s t i f f e r  response compared with experi- 

ment, while the solutions obtained from using the CC element converge more 

rapidly but tend t o  be "too flexible".  However, the strain-time h is tor ies  as 

shown i n  Fig. 16c indicate tha t  the s t r a i n  responses predicted by the CC ele- 

ment are very close t o  measured values, while the LC element under-predicts 

the s t ra in .  

The experimentally 

It  should be noted tha t  for  t h i s  f ree  ring subjected to  severe impulse 

loading (see Fig. l l c ) ,  one may expect the s t ra in-rate  e f f ec t  to become rather 

important. 

from the g a s t i c  l inear  =train-gardening ana Ztrain rate (EL-SH-SR) calculations 

are shown i n  Fig. 17a and Fig. 17b, respectively. Far be t te r  ( i n  f ac t ,  excellent)  

agreement with experiment of the CC element predictions than those of the LC ele- 

ment predictions are observed. 

involving a rather  severe degree of response, computational experimeats have 

indicated t h a t  reliable deflection and s t r a in  predictions are obtained i f  the 

The central  l i ne  separation and s t r a i n  t i m e  h i s tor ies  predicted 

I t  should be mentioned that for  this free ring 
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t i m e  steps are A t  2 0.8 x A t c Q  E 0.8(2/~-). 

for  the clamped beam, it is believed tha t  the c r i t i c a l  t i m e  step is affected 

by the severity of the s t ruc tura l  responses. 

the key role i n  effect ively s t i f fening the s t ructure  and thus requiring a 

smaller A t  t o  avoid round-off e r ror  ins tab i l i ty .  

Comparing with A t  2 0.99(2/w ) m a x  

That is, large deflections play 

The above-mentioned comparable behavior of the CC element predictions 

versus LC element predictions are  a l so  observed i n  the clamped ring calculations; 

see for  example, the central  deflection responses presented i n  Fig. 18. 

In  view of the present resu l t s  and those of (Ref. 1611, it can be con- 

cluded tha t  the CC-type assumed displacement function exhibits significantly 

improved predictions, especially for  the strains, over the LC assumed-displace- 

ment elements. Also, the  former converges very rapidly but a t  the expense of 

a smaller allowable time-increment s tep  coxnparei! with the l a t t e r .  

It should be noted that i n  the above example, the converged solution 

obtained by using a f iner  mesh s ize  is caused not only by the bettes.approxima- 

t ion of the or iginal  continuum, but also by the bet ter  representation of the 

abrupt change of the i n i t i a l  impulse loading imparted t o  the system a t  the edge 

of the high explosive. This matter is discussed further i n  Subsection 5.3.6.1- 

5.3.5 Comparison of the U s e  of a Consistent Mass Matrix 

Versus a Lumped Mass Matrix 

If the lumped m a s s  ma t r ix  is used (a = 1/2, 6 = 1/24, see Eq. 4.32) for  

the analysis of the clamped beam example, it is observed i n  Fig. 19a tha t ,  €or 

the same mesh s ize ,  the max imum frequency represented by the lunped mass matrix 

system ( l inear-elast ic ,  sna l l  deflection) i s  smaller than tha t  obtained by the 

use of a consistent mass matrix system. Hence, a larger time increment s ize  

( to  avoid numerical ins tab i l i ty )  can be used f o r  the lumped-mass-matrix system 

than for the consistent-massmatrix system. 

Figure 19b shows the midspan deflection responses fo r  large-deflection 

elast ic-plast ic  s t ra in-rate  dependent behavior. 

both types of mass-matrix systems are qui te  close t o  each other,  where the 

half-span of the beam is tmdeled by 10 elements and the time increment s ize  

used for  a s tab le  solution is A t  2 0.99 A t c Q  = 0.99(2/wmax). 

The responses predicted by 

That is, 1.45 psec 
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for  the consistent mass matrix system and 2.45 psec fo r  the lumped mass matrix 

system. 

larger than AtcQ. Comparisons of lumped mass model (a = 1/2, 6 = 1/24, see 
Eq. 4.32) predictions versus consistent mass model prei ic t ions for  the free  

r ing example using Bernoulli-Euler CC-type ring elements are presented i n  

Figs. 20a, 20b, and 20c fo r  the maximum natural  frequencies, the central-l ine 

separation, and the s t r a i n  responses, respectively. Again, by using the 

lumped mass matrix, a smaller maximum natural  frequency and good accuracy of 

the predicted nonlinear responses compared with the use of the consistent mass 
matrix are  observed. 

A violent  degradation of the responses occurs when A t  is only a t r i f l e  

I t  should be noted tha t  the use of the lumped mass matrix (with u = 1/2, 

6 = 1/24) not only decreases the maximum natural  frequency (hence enables one 

to  employ a larger t i m e  increment s tep  fo r  the response calculation than the 

consistent m a s s  matrix system), but a lso reduces the storage and computer t i m e  

required for  the solution of the t ransient  response problem. Because the lumped 

mass matrix is a diagonal matrix, [MI = [midij], i ts  inverse is just 

[MI-' = [l/mi(6. . I  I - However, it should be noted tha t  fur ther  studies need t o  be 

conducted t o  develop mass matrix lumping rules which are appropriate for  various 

user-selected criteria. 

2 3  

5.3.6 Assessment of Some Features o f  the Method 

Among the various features of the present finite-element analysis which 

are  examined and discussed i n  the following are: 

(a) the e f fec ts  of various i n i t i a l  veloci t ies ,  specified 

a t  the nodal points of the finite-element assembled 

s t ruc tu re  , t o  approxiiiate the impulse loading which 

is produced by the detonation of a sheet of f in i te -  

span high explosive ; 

ef fec ts  of the number of spanwise Gaussian points 

used t o  evaluate the properties of each d iscre te  

element (p} and [h] ,  and the number of ciepthwise 

Gaussian points used t o  evaluate stress resul tants  

(axial  force,  moment and/or shear force) a t  each span- 

w i s e  Gaussian s ta t ion;  

(b) 
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(c) the e f f ec t  on the predicted transient response of 

including strain-rate sens i t iv i ty ;  

the e f f ec t  on the predicted transient response of 

including transverse shear deformation. 

(6) 

Each of these matters is discussed as'follows. 

5.3.6.1 Effects of Using Various I n i t i a l  Nodal Velocities 

t o  Approximate the Impulse Loadins 

Experimentally, the impulsive loading may be produced by the detonation 

of a sheet of high explosive (HE). 

thin layer of a sui table  buffer material t o  prevent intense stress-wave- 

induced spa11 fracture  of the test specimen. Experiment indicates t ha t  a 

nearly uniform i n i t i a l  normal impulse is imparted t o  those portions of the 

specimen immediately underneath the HE layer. However, f o r  t;?e region of the 

beam near the spanwise edges of the HE layer, a very steep gradient of imparted 

impulse is observed. A typical normalized dis t r ibut ion (Ref. 44) of the im- 

parted impulse, is shown i n  Fig. 21a for  the clamped beam covereG by 0.015-in. 

thick HE layer (DuPont EL 506D) over a 2-in. span. The finite-span HE edge 

e f f ec t  persists t o  a distance of about 0.5 t o  1.0 inch. 

Beme- the HE and the test specimen i s  a 

I n  theoret ical  -analyses the impulsive loading can conveniently be ap- 

proximated by assuming an i n i t i a l  velocity distribution. 

present finite-element approach, the i n i t i a l  conditions t o  be specified are 

those nodal generalized i n i t i a l  veloci t ies  {4* It=*. 
mental impulse dis t r ibut ion data shown i n  Fig. 21a, a uniform i n i t i a l  transverse 

nodal velocity is assumed t o  occur a t  those nodes of the beam elements which are 

ent i re ly  covered by the HE layer. However, f o r  nodes within the HE edge-effect 

zone, the specification of i n i t i a l  velocit ies poses some uncertainty. aecause 

the compatibility conditions required by the Bernoulli-Euler finite-element 

displacement m o d e l  are t h a t  a t  boundary nodes of each element, the compati- 

b i l i t y  of w and $(=b/ar l  - v/R) with neighboring elements is required, the 

i n i t i a l  velocit ies of node n ( i f  it is locat+ a t  the middle of +e HE edge 

zone) may-be specified by e i the r  (1) w = a,  W = 0 or (2 )  w = a/2,'ul = 0,  or ( 3 )  

w = a/2, $ = a/g, where "a" is the uniform i n i t i a l  normal velocity assigned to  

Corresponding t o  tne 

From the spanwise experi- 
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the nodes covered by the €E layer but not i n  the HE edge zone of span "2".  

These three i n i t i a l  velocity simulations of the e f f e c t  of a f i n i t e  span of the 

HE layer on the dis t r ibut ion of imparted impulse (as depicted i n  Fig. 2% and 

designated as  IV1, IV2, and IV3) have been tested i n  the present analysis. 

The clamped-beam midspan deflection responses result ing from using these 

three different  i n i t i a l  conditions are compared w i t h  each other and w i t h  experi- 

ment i n  Fig. 22. As shown i n  Fig. 22, it can be seen that the use of IV1 

i n i t i a l  velocity representation gives a response with higher amplitude than 

both that of experiment and those responses predicted by using IV2 and IV3, 

whereas the responses obtained by employing IV2 and IV3 i n i t i a l  velocity repre- 

sentations a re  close t o  each other and are i n  good agreement w i t h  experiment. 

Hence, i t  may be concluded tha t  the IVl i n i t i a l  velocity representation gives 

a higher amount of impulse than the actual  impulse imparted t o  the beam, where- 

as the IV2 and IV3 i n i t i a l  condition representations tend t o  simulate the ex- 

perimentally-imparted impulse be t t e r  than the first one does. In  t h i s  example, 

10 uniform elements are used to  model the half-span of the beam. But, when a 

coarser mesh is used, as shown i n  Fig. 23 f o r  the free-ring central-plane 

separation responses, the IV2 and the IV3 i n i t i a l  condition simulations can 

give very different  responses. However, both predictions approach each other 
when the mesh s i zes  become f iner .  From the above examples, it may be concluded 

t h a t  a f i n e r  space mesh would be required, especially near the edge of the HE 

layer,  before a reasonably accurate representation of the i n i t i a l  impulse 

loading conditions can be obtained by the present computational method, as 

correlated w i t h  experiment. 

5.3.6.2 Effects of the f?umber of Spanwise and Depthwise 

Gaussian Integration Points 

Concerning the  numerical evaluation of the integrals  for determining 

the element properties {p} and [h] of Eq. 4.37, Gaussian quadrature has been 

employed t o  carry out the spanwise integrations over the length of the element 

and depthwise a t  each spanwise Gaussian point. 

used also t o  evaluate the stress resultants (axial force, moment,and/or shear 

force).  

Gaussian quadrature has been 
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As i l l u s t r a t ed  by the clamped-beam example, the rnidspan-deflection 

responses obtained by using various numbers of spanwise Gaussian points are 

shown i n  Fig. 24; i n  each case, 4 depthwise Gaussian s ta t ions  have been em- 

ployed to evaluate the stress resultants a t  each spanwise Gaussian point. 

is seen tha t  the prediction obtained by using only one spanwise Gaussian point 

tends t o  deviate appreciably from the behavior predicted by using 2,  3, o r  4 

spanwise Gaussian points; t ie  2-spanwise-Gaussian-point r e su l t  tends t o  be 

somewhat too stiff; while the 3- and 4-spanwise-Gaussian-point r e su l t s  are 

very close t o  each other. 

assuming tha t  the stress resultants may be approximated over the length of the 

element by their values a t  the center of the element; t h i s  prediction is seen 

t o  be bet ter  than t h a t  for  the 1-spanwise-Gaussian-point case, but the 

"structure" tends t o  be too s t i f f .  

I t  

Also shown i n  Fig. 24 are the r e su l t s  obtained by 

As fo r  the e f f ec t s  of varying the number of aepthwise Gaussian points t o  

evaluate the stress resultants,  shown i n  Fig. 25 are the midspan-deflection 

responses of the clamped-beam obtained by using 2 ,  3, 4, and 5 depthwise 

Gaussian points. In  each case, 3 spanwise Gaussian points a re  used. I t  is 

seen t h a t  there i s  not very much difference among the deflection responses, as 

the number of depthwise Gaussian points is  increased from 2 to 5. 

probably because the stretching behavior is predominant for  the present clamped- 

This is 

beam example. The responses of t he  2- and of the  4-point case d i f f e r  somewhat, 

while the use of more than 4 depthwise Gaussian points affected the  predicted 

response only very l i t t l e .  

and 48, it appears reasonable to conclude t h a t  the  use of 3 spanwise Gaussian 

points (or stations) and 4 depthwise Gaussian points a t  each spanwise Gaussian 

s t a t ion  suff ices  fo r  (a) representing the internal  stress distributions across 

the elements thickness and (b) the spanwise integration over the element length. 

+ I n  view of the above r e su l t s  and those of Refs. 44 

5 . 3 . 6 . 3  The Effect of Strain-iate Sensit ivity 

In  order t o  i l l u s t r a t e  the e f f ec t  on tile transient response of using 

r b a a t e r i a l  s train-rate s ens i t i v i ty  i n  tne present analysis, tho impulsively-loatie6 
+ 
Similar calculations f o r  the f r ee  ring (Fig. l l c )  using 3 spanwise Gaussian 

s ta t ions  and e i the r  4 o r  6 depthwise Gaussian s ta t ions  exhibited very l i t t l e  
difference i n  the  predicted responses. 
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clamped beam has been analyzeci wich the material property approximated e i the r  

by EL-PP (elastic-perfectly p l a s t i c )  o r  by EL-PP-SR (elastic perfectly-plastic 

and st rain-rate  sensi t ive) .  The midspan deflection responses a re  compared i n  

Fig. 26. Tne EL-PP-SR solution gives an 8% reduction i n  peak deflection com- 

pared with the EL-PP r e su l t s  and this peak occurs about 40 gsec e a r l i e r  than 

i n  the EL-PP solution. 

For the impulsively-loaded f ree  ring with CC Bernoulli-Culer-type ring 

elements, the predicted centerline midplane separation responses obtained by 

using the EL-SH-SR (elastic, linear-strain-hardening, and strain-rate sensit ive) 

approximation fo r  the material behavior leads t o  a 29% smaller peak a,plirude 

aid tiiis peak occurs about 400psec e a r l i e r  than i n  the EL-Sti solutioa,  as 

shown i n  Fig. 27. 

Euler-type ring elements with or without including the strain-rate effect .  

Shown a lso  a re  the responses predicted by using LC Bernouiii- 

Figure 22 shows the strain-rate e f f ec t  on the central  ;reflection re- 

sponses of the impulsively-loaded clamped ring wnich was nodele< by using 

e i the r  the LC Bernoulli-Euler-type element o r  the Timoshenko-type element. I t  

is seen t h a t  including the strain-rate e f f ec t  produces a " s t i f f e r  response"; 

i.e., s m a l l  peak deformation response and earlier time-to-peak compared w i t n  

tile corresponaing s t ra in-rate  independent preuictions. 

The above-mentioned peak deformation response reductions and ea r l i e r  

peak responses caused by assuming the material t o  be strain-rate sensit ive 

(and to follow Eq. 2.75) is  a l so  observed i n  the finite-difference calculations 

of R e f .  44. 

5.3.6.4 

I n  order t o  examine the influence on the predicted response by using 

Tne Effects of Including Transverse Snear Defornation 

the present Timoshenko-type element as developed i n  Subsection 4.4 (wnich 

takes the transverse shear uefomation i n t o  account) as conpared w i t i i  t ha t  

obtained by using the LC and CC Bernoulli-Euler elements, the impulsively- 

loaded ring problems w e r e  analyzed witn only the l inear  assumed displacement 

functions for  V I  w ,  and 0 f o r  the Tinoshenko-type element. 

The maximum natural  frequency (l inear systen) as  computed by employing 

the Timoshenko-type elements is compared with t h a t  obtained by using 
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Eernoulli-Euler-type elements, in Fig. 23 anci Fig. 30 for the clamped beam 

ant, the free ring, respectively, as a function of the number of elements per 

half-span. 

Tiiaoshenko-type elements gives a larger maximum natural frequency, ana hence 

a small critical At, than that obtaineci by the use of Bernoulli-Euler-type 

elements. 

It is onserved for both the beam anci tile ring that the use of 

For the clamped beam, shown in Fig. 31 are the Timoshenko-type predic- 

tion and the Bernoulli-Euler-type prediction of the midspan deflection re- 

sponses. Good agreement between these solutions is observed. 

Turning to the clamped ring results, the predicted central deflection 

responses for the Timoshenko-type element are compared with those obtained by 

using (1) LC Bernoulli-Euler-type elements and (2) CC Bernoulli-Euler-type 

elements in Fig- 32. The observations are that the agreement of the Timoshenko- 

type element prediction with the CC Bernoulli-Euler-type prediction is far 

better than with the LC Bernoulli-Euler-type element prediction. 

It should be noted that, for the present beam and ring examples, the 

transverse shear deformation effect essentially can be neglected, because of 

the thinness of the beam (thickness/span = 0.0125) and ring (thickness/radius = 

0.042). Hence, these examples permit confirming: (1) that the present 

Timoshenko-type element provides accurate large-deflection elastic-plastic 

transient response predictions of Bernoulli-Euler-type deformation and (2) the 

deficiency in the LC-type element, but do not provide a critical evaluation of 

the present Timoshenko-type element to predict large-deflection elastic-plastic 

responses with significant transverse shear deformation effects. 

priate such example having a reliable solution (or test result) has not been 

located. 

An appro- 

5.3.7 Comparison of Accuracy and Efficiency of Finite-Element 

Solutions Versus Finite-Difference Solutions 

5.3.7.1 Scope of Comparisons 

In Ref. 44, experimental measurements of transient deformations and 

strains for impulsively-loaded clamped beams, clamped rings, and free rings 

which undergo large-deflection, elastic-plastic responses are compared with 
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finite-difference (FD) predictions -- wherein f i n i t e  differencing is employed 

fo r  both spat ia l ly-  and time-varying quantit ies.  

agrement has been demonstrated. 

Good theoretical-experimental 

Since the free-ring example (Fig. llc) embodies the most rel iably de- 

fined boundary conditions of the above-cited three cases, only this example is 
used (see Subsection 5.3.7.2) t o  compare the present finite-element (FE) pre- 

dict ions with FD predictions,  and with experiment. Similar comparisons, 

carried out for  the  other two examples of Fig. 11, show similar comparative 

results. 

T h i s  free-ring example is also used i n  Subsection 5.3-7.3 t o  i l l u s t r a t e  

and assess the comparative efficiency of the FD and the present FE prediction 

msthod(s) -- i n  terms of the amount of computar cant ra l  processing un i t  (CPu) 

t i m e  required to carry out  calculations fo r  a given time of actual s t ruc tura l  

response and a t  the same time t o  provide peak deformation (and/or peak s t r a i n )  

predictions within a given percentage of the converged value (displacement or  

s t r a in ) .  This comparison i s  believed t o  provide a reasonably good, although 

tentat ive,  assessment of the comparative cos t  €or providing predictions of a 

"given accuracy" by the FE and the  FD approach. 

/ 

5.3.7.2 Comparison of Experiment with FE and FD Predictions 

The geometry, material  properties,  and loading conditions (represented 

here as i n i t i a l  VePocity conditions) are  shown. i n  Fig. l l c  for  the free  ring. 

It has been demonstrated both i n  Ref .  44 and in Subsection 5.3.6.3 tha t  the 

neglect of s t ra in- ra te  e f f ec t s  i n  representing the mechanical properties of 

this 6061-T6 aluminum al loy material leads t o  a vast  overprediction of the 

s t ruc tura l  response. Accordingly, fo r  convenience, the only material  property 

representation employed i n  the present comparison is EL-SH-SR i g a s t i c ,  l inear  

- strain w d e n i n g ,  and =train-=ate dependent), with D = 6500 8ec-l and p = 4 

(see Zq. 4.50). Also, the f r ee  r ing is assumed to  undergo Bernoulli-Euler-type 

def ornation. 

I n  both the FE and the FD predictions being discussed, the temporal 

3-point central-difference operator is used. In v i e w  of the FE resu l t s  dis- 

cussed i n  the previous subsections, only the improved formulation type of FE 
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predictions is included here; a lso,  the following features a re  used as being 

appropriate and "adequate": 

(a) i n  each element, three spanwise Gaussian s ta t ions  are used 

t o  evaluate {p) and Ihl. 
four depthwise Gaussian s ta t ions are used to evaluate 

the inplane stress resultants and the  moment resul tants  

a t  each spanwise Gaussian s ta t ion.  

Bernoulli-Euler finite-elements having the CC type of 

assumed displacement function are employed. 

(b) 

(c) 

For the FD predictions, the method of Ref. 44 as subsequently improved 

and embodied i n  the JET 2 computer program of Ref. 169 has been used. 

method, the stress and nwment resultants are evaluated only at each " f in i te -  

difference mass-point" s ta t ion ;  a t  each such s ta t ion ,  four depthwise G a u s s i a n  

s ta t ions are used to  carry out these evaluations i n  order t o  provide appropri- 

a t e  correspondence t o  the evaluations used i n  the present FE calculations. It  

should be noted tha t  i n  the finite-difference calculations for  the present 

type of s t ructure ,  there are only two degrees of freedom (axial displacement 

and l a t e r a l  displacement) a t  each space-mesh intersect ion (also called "mass 

point s ta t ion") .  

(automatic) lumping. 

I n  this 

Also, the mass matrix i n  the FD method is obtained by 

I f  one were t o  take advantage of symmetry, one could model the half r ing 

by a n-er N~ of f i n i t e  elements of the =-*e assumed-displacement function 

or by ND finite-difference space-mesh s ta t ions.  

number of degrees of freedom €or each would be as follows: 

Accordingly, the associated 

1 F D : N D  

Degrees of Freedom 
Unrestrained (dof ) 

U 

&aE + 4 

( for  CC elements) 

Degrees of Freedom 
with Symmetry Re- 
s t r a i n t s  Applied (dofs) 

2ND 

In  order t o  i l l u s t r a t e  typical  comparisons of the FE vs FD predictions, 
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calculations which u t i l i z e  a roughly comparable number of degrees of freedom 

are selected fo r  presentation here. 

dofu = 76 and dofs = 72) and 4 = 40 (or dofu = dof = 80) are compared i n  

Fig. 33a fo r  the center l ine midplane separation history and i n  Fig. 33b fo r  

the deformation prof i les  a t  1140 psec and 2580 psec. 

very good agreement between the FE and the FD prediction shown here; also,  both 

predictions are i n  reasonably good agreement with experiment. 

experimental deformed-ring prof i les  exhibi t  some asymmetry, possibly from 

i n i t i a l  out-of-roundness and/or some unintentional and undefined asymmetry i n  

the applied impulsive loading. 

symmetry w a s  imposed by choice -- nonsymmetric cases could be analyzed, how- 

ever * 

+ Accordingly, predictions for  NE = 18 (or 

S 

It is seen tha t  there is 

Note tha t  the 

Whereas, i n  both the FE and FD predictions, 

For the improved-formulation FE analysis of t h i s  r ing which w a s  modeled 

by 18 CC elements, t ransient  response calculations w e r e  carried out by using 

(a) the consistent mass matrix and (b) the lumped mass matrix.  In  each case, 

the A t  used w a s  approximately 0.8 A t c R  5 0 .8  [ 2 / w , a ~ ]  as numerical experiments 

had previously ver i f ied t o  be acceptable; accordingly, the A t ' s  were, 0.6 and 

1.8 Vsec, respectively. Since t o  the scale of the present plots  these two 

t ransient  response predictions w e r e  nearly a l ike ,  only the "more ef f ic ien t"  

lumped-mass FE prediction is shown i n  Fig. 33. 

employed w a s  9/8 psec which is 99% of Atcritical - ( A S ) / ( E / P ) ~ / ~  where As is 

the finite-difference mesh length. 

For the F D  calculation, the A t  

An examination of a more sensi t ive quantity is provided by the dynamic 

s t r a i n  responses. 

a t  6 locations on the r ing are compared i n  Figs. 33c and 33d. Again, both the 

FE and the FD predictions a re  i n  reasonably good amplitude and phase agreement 

with experiment, w i t h  the  FE r e su l t s  being somewhat bet ter .  

Predicted and experimentally-measured strain-time his tor ies  

~ 

Stra in  prof i les  predicted and measured a t  the 3,000 psec ins tan t  are 
compared i n  Fig. 32%. Fair ly  good agreement among the FE prediction, the FD 

prediction, and experiment is observed. Also, note i n  Fig. 3% that abrupt 

reversal  of the s t r a i n  occurs a t  8 = 60° which is the location of the edge of 

the high explosive layer,  and t h a t  the r ing undergoes essent ia l ly  pure bending 

fo r  8 greater than about 70°. 

+ 

# 

Considerable compression s t r a i n  plus bending 

Uniform element lengths and uniform mesh lengths were used. 
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s t r a in  is seen to exist fo r  small-0 locations. 

5.3.7.3 Convergence and Efficiency Comparisons 

It was  noted i n  Subsection 5.3.3 tha t  the conventional finite-element 

formulation requires more computer storage and running time to analyze a given 

problem than does the improved finite-element formulation. For example, fo r  

1000 cycles of computing fo r  the clamped-beam example of Fig. l l a ,  the con- 

ventional formulation required 1.85 minutes while the improved formulation re- 

quired 1.41minutes of CPU time (a saving of about  24%) where the same number 

of IC elements w a s  used for  both computations; the predictions from these two 

calculations w e r e  almost indistinguishable. Since it is clear tha t  the improved 

formulation provides more e f f i c i en t  predictions,  only the improved formulation 

is used in subsequent comparisons i n  t h i s  subsection. 

For assessing the comparative eff ic iencies  of the FE approaches (a) con- 

s i s t en t  mass and (b) lumped m a s s  versus the finite-difference calculation, the 

free-ring example of Fig. l l c  i s  used f o r  both convenience and the f ac t  tha t  

large deformations and elast ic-plast ic  t ransient  responses are  involved. 

By increasing the  number of equal-length f i n i t e  elements (of the CC type) 

to model the half r ing (taking advantage of symmetry) , t ransient  response pre- 

dictions have been carried out. 

sponse were monitored, and are discussed herein, i n  obtaining a useful measure 

of convergence: 

The following two useful indices of the re- 

(1) the peak re la t ive  displacement of the ring a t  the symmetry 

plane (or & 1. 

the peak circumferential s t r a i n  a t  several  locations on 

the outer surface of the ring. 
(2) 

By plot t ing these r e su l t s  as a function of ( l /NE)  2,  and extrapolating t o  

(l/NE) 
w e r e  then ratioed t o  the appropriate "converged" resu l t .  Accordingly, shown 

i n  Fig. 34a is the r a t i o  to the converged r e s u l t  of the predicted peak center- 

l i ne  re la t ive  displacement as a function of the number of unrestrained degrees 

of freedom dof 

2 = 0, "converged" resu l t s  w e r e  estimated. The & responses predicted 

(= 4NE + 4 ) .  Shown i n  Fig. 34b is the average a t  8 = 87', 
U 
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92.S0, and 177O of the peak circumferential s t r a i n  ratioed to the respective 

converged value as a function of dof i a mean dashed l i ne  is shown as w e l l  as 

a speckled band t o  indicate that such resu l t s  show scatter depending upon the 

@-location chosen and the number of 0-locations which one could use t o  con- 

s t r u c t  'this "average". I t  should be noted tha t ,  as discussed i n  Subsection 

5.3.6.1, the specification of i n i t i a l  nodal velocity a t  the node of the f i n i t e  

element which is located a t  the spanwise edge of the high-explosive layer poses 
some uncertainty; t ha t  is, the use of d i f fe ren t  i n i t i a l  nodal veloci t ies  

(IV2 or  IV3) w i l l  y ie ld  very d i f fe ren t  coarse-mesh deformation responses be- 

cause of the nature of the ini t ia l -veloci ty  distribution. 

made by using f ine r  meshes near the edge of the high-explosive layer. 

pending a more rat ional  way of representing the f i n i t e  span impulsive loading 

can be devised, the r e su l t s  presented i n  Figs. 34a and 34b are based on a 
uniform-mesh s i ze  and the IV3 type o€ ini t ia l -veloci ty  representation. 

U 

Improvements can be 

However, 

Similar calculations and reductions were carr ied out  for  the f i n i t e  

difference method using the JET2 computer program. 

r a t i o  to the converged value of the predicted peak centerline re la t ive  dis- 

placement as a function of the number of degrees of freedom (i.e., 2ND). 

Similarly, Fig. 35b shows the average a t  8 = 27*, 4S0,  S3O, 81°, 99O and 171' 

of the peak circumferential s t r a i n  ratioed t o  the respective converged value 

as a function of the number of degrees of freedom i n  the finite-difference 

model; f o r  these 0-locations. the peak s t r a i n  ranged from about 2 t o  4 percent. 

In  Fig. 35b a dashed "average" curve through a speckled band is shown t o  indi- 

cate t h a t  such resu l t s  show scatter which depends upon the &location studied. 

With respect t o  computing t i m e ,  the amount of computer central  process- 

Shown i n  Fig. 35a is the 

' 

ing uni t  time is believed to provide a reasonable basis foz comparing the 

" t i m e  consumption" of the FE and the FD calculations. 

t ion  version of the finite-element method when applied t o  large-deformation 

elast ic-plast ic  t ransient  response problems, it has been found tha t  the m a x i m u m  

allowable time-increment s i z e  A t  is about O.8(2/wm) where w is the largest  

natural  frequency contained i n  the finite-element model of the s t ructure  for  

small vibrations,  where the 3-point central-difference finite-difference t i m e  

operator is used. 

For the improved formula- 

max 

When the present CC type of f i n i t e  element i s  used together 
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with (a) the consistent mass (C) matrix or (b) the lumped mass (L) matrix, the 

w is found t o  be (see Fig. 16a): m w  

(5.8a) 

(5.8b) 

6 = [-0.1445 + 0.03578(dofu)110 radians/sec 

= [-0.0927 + 0.0127(dofu)J10 radians/sec 

(%) max 

(wL)max 
6 

where dof = 4N + 4 fo r  the half  r ing; note t h a t  (aL)- << (wC)max. 
U E 

Further, it has been found that the amount of central  processing un i t  time 

(CPUT) i n  minutes, for  the improved FE method, is given approximately by: 

(minutes) (5.9) 
-UT = [42 x 10 -6 1 [doful E 

where t is  the number of seconds of actual s t r u c t u r a l  response to be computed 

and A t  is also i n  seconds. Since the allowable A t  = 0.8 (2/wmax) , it follows 

that  : 

(5. loa) (CPUT)c = [-3.794(d0fu) +0.9393(dofu) 2 I t  

(5.10b) = [-2.433(dofu) +0.3325(dofu) 2 I t  

Similarly for  the JET 2 program which uses the finite-difference method, 

it has been found t h a t  

(5.11) (cpmIFD = 123 x 10 -6 I Idoful t (minutes) 

where dof = 2ND. 

( A s ) / ( E / ~ ? ~ ,  it follows for  the half r ing with R = 3 in .  and A t  fo r  conserva- 

t i s m  taken as 0.99 (AS) (E/P) 1’2 t ha t  

Also since the largest  allowable A t  is given by 

(5.12) 2 (CPUT)FD = 0.2513(dofu) t 

With the “convergence” r e s u l t s  of Figs. 34a through 35b and with the 

above central  processing uni t  time for  computing, one may estimate the compara- 

t i ve  CPUT values fo r  the FEC, FEL, and FD computer programs used here i n  order 

t o  predict  the peak centerline re la t ive  deformation or the peak circumferential 

s t r a in  t o  within selected percentages of the converged value f o r  each type of 

calculation. An example of such estimates is tabulated as follows fo r  
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computing 1500 psec of transient response of the free r ing,  wherein it has 

been assumed tha t  the "convergence rate" f o r  the lumped mass version of the 

finite-element method is essent ia l ly  the same as that shown i n  Figs. 34a and 

34b for  the consistent mass version of the finite-element m e t h o d .  

CEWRAL PRWESSING UNIT COMPUTING TIME ON IBM 370/155 
AT MIT (MINUTES) FOR 1500 MICROSECONDS OF ACTUAL 

STRUCTURAL RESPONSE 

Percent of "Converged" 
Peak ~ i n g  4 Relative 

Displacement 

2 

1 

Percent of "Converged" 
Peak St ra in  on the  

Average 

10 

5 

3 

Finite-E 
Improved Fc 

bnsis tent  Mass 
CC and 

2.03 

3.24 

6.89 

2.48 

5.58 

7.50 

sent 
nulation 

CC and 
Lumped Mass 

.65 

1.06 

2.32 

.82 

1.87 

2.53 

Fini te  Difference 

1.36 

1.64 

2.01 

1.85 

2.47 

2.92 
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Comparing the two types of f i n i t e  element calculations (consistent 

mass and llnnped mass), it is evident that it is substant ia l ly  more e f f i c i en t  

to use the lumped-mass version of the f i n i t e  element method. Further, since 

the t ransient  responses of the consistent mass and of the lumped mass FE cal- 

culations d i f f e r  only s l igh t ly ,  it is reconunended that the lumped mass version 

of the FE method be selected as being more e f f i c i en t  and adequate fo r  enqineer- 

ing prediction purposes. 

Note also tha t  this example comparison indicates that the FE calcula- L 
t ion is often more e f f i c i en t  than the FD prediction method. 

clusion that the FE 

method is not warranted on the basis  of this limited comparison. 

examples and much more thorough comparisons would be required before any judg- 

ment of t h i s  type could be made -- it would not be unexpected t o  find that one 

method would be superior for  cer ta in  types of examples and the other method 

would be superior for  cer ta in  other types of s t ruc tura l  t ransient  response 

problems. 

However, the con- 

calculation w i l l  usually be more e f f i c i en t  than the FD 

Many more 
L 

Finally,  i n  comparing FE calculations with FD calculations wherein each L 
employs the same number of degrees of freedom dofu, for  the f ree  ring, it is 

seen that the r a t i o  (CPUT)FD/(CWT)L f o r  dofU = 10, 50, and 100 is  2.815, 0.884, 

and 0.816, respectively, and asymptotically approaches 0.755 as dof is in- 

creased indefini te ly  i f  it is presumed tha t  Eqs. 5.10b and 5.12 would apply -- 
these equations would, of course, cease to be val id  where dof becomes so 

large tha t  resor t  t o  auxiliary storage and r e t r i eva l  would be needed. 

reasons fo r  this re la t ive  computing time consumption involve the fac ts  that: 

U 

U / 
The 

(a) For the same number of degrees of freedom, the total nuniber 

of spanwise Gaussian points employed i n  the FE method is. 1.5 

t i m e s  as large as the t o t a l  number of space-mesh intersections 

used i n  the F D  method; Gaussian evaluations i n  the latter are 

performed only a t  the space-mesh intersect ion s ta t ions.  

each spanwise Gaussian s ta t ion,  inplane stress resul tants  and 

moment resul tants  are evaluated. 

A t  
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(b) I n  the FD method, the s t r a i n  is computed from the s t ra in-  

displacement re la t ions by f ini te-difference approximations 

i n  terms of displacements a t  two or three neighboring space- 

mesh s ta t ions.  

strains, one computes the s t r a ins  from the strain-displace- 

ment re la t ions  d i rec t ly  by using the assumed-displacement 

f i e l d  of the f i n i t e  element involved; this involves a t i m e -  

consuming matrix multiplication. Of course, one could cir- 

cumvent t h i s  i n  pa r t  i n  the FE method by resorting t o  the 

use of finite-difference approximations fo r  each spanwise 

Gaussian s ta t ion  i n  terms of nearby nodal generalized dis- 

placements. 

On the other hand, i n  the FE evaluation of 

Also, several  recent papers (Refs. 187, 188, and 189) i n  which various 

aspects of the finite-difference method versus the finite-element method are 

discussed have j u s t  appeared; these documents are recommended reading -- cover- 

ing some of the present aspects as w e l l  as others. 

tioned tha t  the finite-difference equations formulated i n  Refs. 39, 188, and 

189 are based upon the variational-energy principle;  the derivatives of the 

f i e l d  variables i n  the var ia t ional  functional are replaced by appropriate 

finite-difference quotients which involve only the values of the variables a t  

the space-mesh s ta t ions.  This finite-difference formulation is, hence, somewhat 

d i f fe ren t  from &at described i n  Section 3, wherein the derivatives i n  the 

governing d i f f e ren t i a l  equations and boundary conditions are replaced by appro- 

p r i a t e  finite-difference expressions. 

It  perhaps should be men- 
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SECTION 6 

APPLICATION: CONTAINMENT/DEFLECTION RING RESPONSES 
TO ENGINE ROTOR BLADE FRAGMENT INPACT 

6.1 Introduction and Problem Definition 

Since the advent of the turbojet  engine, there have been, from time to 

time, fa i lures  of turbine and/or compressor rotor  blades and/or disks on en- 

gines of both m i l i t a r y  and c iv i l ian  a i r c r a f t  (Refs. 1, 170-173). Fragments 

which are uncontained ( tha t  is, penetrate the engine casing) might in jure  

personnel occupying the a i r c r a f t  and might cause additional damage t o  fue l  

l ines  and tanks, control systems, and other v i t a l  components. Although strenu- 

ous effor ts 'have been and continue t o  be made t o  avoid blade/disk fa i lures  

through improved materials, design, fabrication, and inspection, a not-insignifi- 

cant number of such fa i lures  persist. I t  is desirable,  therefore,  t o  provide 

protection (a) fo r  on-board personnel of a i r c r a f t  i n  f l i g h t  and (b) for  v i t a l  

components. 

' 

Similar but perhaps less severe fragment containment/control problems 

may be encountered where turbines and/or energy-storing flywheels are  used i n  
stationary power plants ,  aboard ships,  and/or i n  land vehicles such as buses, 

t rucks ,  automobiles, and t r a i n  locomotives. In  these cases, there would usually 

be l ess  concern about the "weight penalty" fo r  insuring fragment containment 

than fo r  a i rc raf t .  

Two d i s t inc t  avenues fo r  providing this protection are evident. F i r s t ,  

the s t ructure  surrounding the "failure-prone" rotor  region could be designed 

t o  contain ( tha t  is, prevent the escape of)  the rotor-burst fragments completely. 

Second, the s t ructure  surrounding t h i s  rotor could be designed so 4s to  prevent 

fragment penetration i n ,  and to  def lec t  fragments away from, cer ta in  c r i t i c a l  

regions or  directions but t o  permit fragment escape readily i n  other "harmless" 

regions o r  directions.  

employed i n  a given design. 

fo r  the least weight and/or cos t  penalty. 

were t o  be adopted, one might expect tha t  the second would be most cost  andlor 

weight effective.  However, the present (1) knowledge of the fragment-structure 

One or  both of these schemes could, i n  principle,  be 

In  any event, t h i s  desired protection is sought 

I f  only one of these two schemes 
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interaction phenomena and (2) analysis/design tools are inadequate to permit 

making a definitive comparative assessment at this time, although much progress 

has been made in both of these areas in the past few years. 

As pointed out in Ref. 1, NASA has been sponsoring a research program 
which is designed to meet the objective of providing the necessary protection 

to aircraft without imposing large weightpenalties. Starting about 1964, the 

Naval Air Propulsion Test Center (NAPTC) under NASA sponsorship has constructed 

and employed a spin-chamber test facility wherein rotors of various sizes can be 

operated at high rm, failed, and very importantly the interactions of the re- 
sulting fragments with various types of containment and/or deflection structures 

can be studied with high-speed photography, in addition to post-mortem studies 

of the containment/deflection structure and the fragments. Many such tests in- 

volving single fragments or many complex fragments impinging upon containment 
structures of various types and materials have been conducted (Refs. 170-174) 

and have substantially increased the body of knowledge of the attendant phe- 
nomena. 

the MIT Aeroelastic and Structures Research Laboratory (AS%) to develop methods 

for predicting theoretically the interaction behavior between fragments and con- 

tainment/deflection structures, as well as the transient deformations and re- 

sponses of containment/deflection structures -- the principal objective being 
to devise reliable prediction/design procedures and containment/deflection 

techniques. 

perimental and the MST-ASRL theoretical studies, with special supportive- 

diagnostic experiments and detailed measurements being designed jointly by 

NASA, NAPTC, and MIT personnel and conducted at the NAPTC. Subsequent analysis 

and theoretical-experimental correlation work has been increasing both the under- 

standing of the phencnaana involved and the ability to predict these interaction/ 

structural-response phenomena quantitatively. 

For the past several years NASA has sponsored a research effort at 

Important cross-fertilization has occurred between the W T C  ex- 

Because of the multiple complexities involved in the very general case 

wherein the failure of one blade leads to impact against the engine casing, re- 
hund,  interaction with other blades and subsequent cascading rotor-failures 
and multiple-impact interactions of the various fragments with the casing and 
with each other, it is necessary to focus attention initially upon a much 
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simpler s i tuat ion i n  order t o  develop an adequate understanding of these col- 

l ision-interaction processes. Accordingly, ra ther  than considering the 

era1 three-dimensional large deformations of actual  engine casings under multi- 

p le  rotor-fragment attack, the simpler problem of planar s t ruc tura l  response 

of containment structures has been scrutinized. T h a t  is, the containment 

structure is regarded simply as a s t ruc tura l  r ing lying i n  a plane; the r ing 

may undergo large deformations but these deformations are confined essent ia l ly  

t o  that  plane. For such a case, a numerical method of analysis to  predict  the 

t ransient  large-deformation responses of such s t ructures  t o  known impulsive 

and/or t ransient  external loading has been developed a t  the MIT-ASRL and has 

been ver i f ied (Refs. 44 and 45) by evaluative comparison with high-quality ex- 

perimental data,  to  provide r e l i ab le  predictions. T h i s  prediction method is 

suff ic ient ly  simple t h a t  one can feasibly carry out cer ta in  types of parametric 

s t ruc tura l  response calculations,  provided t h a t  known or prescribed externally- 

applied forces or impulses are employed; limited such s tudies  are reported i n  

Refs. 175 and 176. 

In  the present context, therefore,  the crucial  information which needs 

to be determined ( i f  the s t r u c t u r a l  response of a containment ring is to  be 
predicted rel iably)  concerns the magnitude, dis t r ibut ion,  and time history of 
the loading which the r ing experiences because of fragment impact and inter-  

action w i t h  the ring, 

considered: 

Two means for  supplying t h i s  information have been 

(1) The TEJ concept (Refs. 169, 176, 177) which u t i l i ze s  measured 

experimental ring pos i t ion- the  data during the ring-fragment 

interact ion process i n  order t o  deduce the external forces 

experienced by the ring. This concept has been pursued. A n  

important m e r i t  of this approach is t h a t  it can be applied 

with equal f a c i l i t y  t o  r ing problems involving simple single  

fragments such as one blade, or to  cases involving a complex 

multi-bladed-disk fragment. The central  idea here is tha t  i f  

the TW type analysis were applied t o  typical cases o f ,  f o r  

example, (a) single-blade impact, (b) disk-segment impact, 

and/or (c) multi-bladed disk fragment impact (see Figs. 36 
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and 37) , one could determine the dis t r ibu t ion  and time 

his tory of the forces applied t o  the containment r ing 

fo r  each case. 
t ive ly  i n  computer code response-prediction-and-screen- 
ing s tudies  fo r  similar types of ring-fragment interact ion 

problems involving various other materials, where guidance 

i n  the proper application of these forces or  the i r  modifica- 

t ion  could be furnished by dimensional-analysis considera- 

t ions and selected spot-check experiments. 

On the other hand, t h i s  approach suffers from the f a c t  tha t  ex- 

perimental t ransient  s t r u c t u r a l  deformation data = b e  avail- 

able; the forcing function is not determined from basic material 

property, geometry, and i n i t i a l  impact information, 

The second approach, however, u t i l i ze s  basic material 

property, geometry, and i n i t i a l  impact information i n  

an approximate analysis which employs the basic prin- 

c iples  of energy and momentum conservation as w e l l  as 

material property const i tut ive data. 

involves only a s ingle  fragment, this method can be 

carried out and implemented without undue d i f f icu l ty ,  

but can become very complicated and time consuming i f  

complex fragments and/or multiple fragments must be 

taken in to  account. 

Such forces could then be applied tenta- 

I f  the problem 

Approach 1 is explained i n  d e t a i l  i n  X e f s .  169, 176, and 177. The present 

report  deals with approach 2 and confines a t tent ion t o  problems involving only 

a s ingle  simple fragment; problems involving more complicated fragments are 

le f t  f o r  future  consideration. 

Various levels  of sophistication may be employed i n  approach 2. 

could, f o r  example, employ finite-difference methods wherein both the contain- 

ment r ing and the fragment are represented by a suitably f ine  three-dimensional 

spa t i a l  mesh and the conservation equations are  solved i n  t i m e  f o r  simple con- 

figurations by d i g i t a l  computer codes such as HEMP (Ref. 1781, STRlDE (Ref. 179) # 

One 
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and/or HELP (Ref. 18O), which take into account elastic, plastic, strain harden- 

ing, and strain-rate behavior of the material. 

for certain types of problems, are very lengthy and expensive, and are not well 

suited for the type of engineering analysis/design purposes needed in the present 

problem; for complicated or multiple fragments, such calculations would be pro- 

hibitively complicated, lengthy, and expensive. A simpler, less complicated, 

engineering-analysis attack within this general framework is needed. 

Such computations, while vital 

Two categories of such an engineering analysis MY be identified and 

are termed: (a) the collision-imparted velocity method (CWM) and (b) the 

collision-force method ( C F M ) .  The essence of each method follows: 

(a) Collision-Imparted Velocity Method (CIVM) 

In this approach the local deformations of the fragment or of the 

ring at the collision interface do not enter explicitly, but the 

containment ring can deform in an elastic-plastic fashion by mem- 

brane and bending action as a result of having imparted to it a 
collision-induced velocity at the contact region via (a) per- 

fectly-elastic or (b) perfectly-inelastic behavior. In fact, 

any type of material behavior may be accommodated readily. 

Since the collision analysis provides only collision imparted 

velocity information for the ring and the fragment (e the 
collision-induced interaction forces themselves), this procedure 

is called the =ollision-&nparted velocity Eethod. 

(b) Collision-Force Method (CF'M) 

In this method the primary information predicted in the collision 

analysis consists of the collision-induced interaction forces 

themselves; the associated and subsequent ring and fragment re- 

sponses are also predicted. 

Since the CWM is much simpler to implement than the C F M  approach, the CIVM 

scheme has been studied and is discussed (later) in some detail in Subsections 

6.2, 6.3, and 6.4 of this report. The CFM approach, described briefly in 

Subsection 6.2.2, is currently under study, development, and feasibility 

evaluation; these findings will appear in a future report. 
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In  Subsection 6.2 approximate col l is ion analyses are discussed i n  de- 

Some applications and evaluation of the CIVM approach are documented tail. 
i n  Subsection 6.3. 

scheme to more complex problems are given i n  Subsection 6.4. 

Finally,  sane comments on potent ia l  extensions of the CIVM 

6.2 4 p  roximate Collision Analyses 

Under consideration i n  this subsection are approximate methods for  pre- 

dict ing the "immediate consequences" of the impact of a fragment against 

another physical body. One may regard the fragment as being (a) r ig id ,  (b) 

perfect ly  elastic, (c) perfect ly  ine las t ic ,  or (d) deformable elast ic-plast ic  

w i t h  EL-SH-SR behavior; similar behavior may be at t r ibuted to the body which 

is struck by the fragment. 

t o  (d) , the  modeled consti tutive behavior of each m o s t  closely simulates the 

t rue  physical behavior, but the associated impact-interaction is the most com- 

plex of the various options. 

sires to employ the simplest and least expensive procedure which w i l l  give ade- 

quate engineering accuracy. Accordingly, various convenient and plausible 

assumptions are invoked to predict  the "immediate impact-interaction" behavior 

of a fragment which col l ides  with a containment/deflection structure.  

When both bodies are t reated as behaving according 

For engineering applications purposes, one de- 

For present purposes, the subject coll ision-interaction problem is Simpli- 

f ied  by r e s t r i c t ing  the motion to l i e  i n  one plane; the extension of the analy- 

sis t o  the more general three-dimensional motion-and-deformation behavior can 

be carried out, i f  desired, i n  a future  investigation. Also, only a s ingle  

simple fragment is considered, as depicted schematically i n  Fig. 36a. As 

noted earlier, pr incipal  a t tent ion is given i n  t h i s  report  to  the approximate 

analysis which is termed the collision-imparted velocity method (CIVM); only 

limited discussion is devoted t o  the collision-force method (&MI i n  

Subsection 6.2.2. 

6.2.1 Collision-Imparted Velocity Method (CIVM) 

For the CIVM approach, the following additional simplifying assumptions 

are invoked: 

(1) I n  an werall sense, the fragment i s  treated as being rigid.  

It does not undergo bending or extensional deformation, but 
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a t  the "imme&iate contact region" between the fragment 

and the struck object (termed the "target" fo r  conveni- 

ence), the co l l i s ion  process is regarded as being in- 
stantaneous with a perfectly-elastic or a perfectly- 

i ne l a s t i c  interaction. 

The coll iding surfaces of both the  fragment and the target  

are perfect ly  smooth; hence, no forces and/or veloci t ies  

(or momentum) are e i ther  transmitted or imparted in the 

tangential  direction. 

During the col l i s ion ,  the contact forces are the only ones 
considered t o  act on the fragment and ( in  an an t ipara l le l  

fashion) on the ring. The internal  forces are approximated 

as being zero because the duration of the impact is so 
short  as to  preclude the i r  "effective development". 

The col l is ion process is instantaneous and involves only 

the fragment and the containment-ring segment which en- 

caupasses the ring-fragment col l is ion point,  as indi- 

cated schematically i n  Fig. 38. The word "inStantaneOUS" 

implies t h a t  the internal  forces can be neglected be- 

cause stress waves have not had tinre t o  traverse the 

area near the col l is ion frcnn regions reasonably remote 

from the impact point i n  the ring. It is t h i s  in- 

stantaneity which permits one to o m i t  the  in te rna l  

forces from the CIVM model. 

To avoid unduly complicating the analysis and because 

of the smallness of the arc length of the target-ring 

element, the r ing element is treated as a s t r a igh t  

beam i n  the derivation of the impact equations. 
~ 

Two d i f fe ren t  approximation m o d e l s  are  evident fo r  the collision-interaction 

calculation fo r  the fragment with the ring; namely, the consistent mass model 

and the  lumped mass model. 

having a dis t r ibuted mass; the latter scheme, employed i n  Ref. 181, considers 

the m a s s  of each r ing element t o  be concentrated a t  its two end nodes. 

The former scheme t r ea t s  each r ing element as  
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Accordingly, there are two sets of impact equations corresponding to  these two 
approximate interact ion models, which are described, respectively, i n  Subsec- 

t ions 6.2.1.1 and 6.2.1.2. 

6.2.1.1 Consistent-Mass Collision Model 

In  this col l i s ion  mode1,the affected ring segment is idealized as a s t r a igh t  

beam of length s having a nonuniform dis t r ibut ion of mass. 

smooth 

e x i s t  a t  the impact location, the instantaneous co l l i s ion  process r e s u l t s  i n  

an equal and opposite impulse applied t o  the ring (beam) segment and t o  the 

fragment i n  the direct ion normal t o  the axis  of the ring segment; accordingly, 

tangential-component veloci t ies  are unaffected -- only the normal-direction 

components of the veloci t ies  of these two bodies undergo.change because of 

the coll ision. Hence, only these components are employed i n  the following con- 
servation relations.  

Since perfectly 
+ 

surfaces f o r  both the ring segment and the fragment are assumed to 

Referring t o  the schematic and notation of Fig. 39a and to the idealized 

"line" geometry depicted i n  Fig. 40a, the impulse-momentum l a w  and the kinet ic  

energy conservation l a w  may be writ ten t o  characterize the "instantaneous im- 

pact behavior" of this system, as follows: 

Translational Impulse-Momentum Law 

(ring segment) n 

( fragment ) 

+ 
analysis,  but could be relaxed, i f  desired, i n  future work. 
The smooth surface assumption is invoked, fo r  convenience, i n  the present 
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Conservation of Kinetic Energy 

where 

m = m a s s  of the ring element which has a length s r 

m = mass of the fragment whose length is !Z fl + kf2  (Fig. 39a) 

k i n  Eq. 6.4 = fragment length from the  impact point t o  the c.g. 

f 

of the fragment 

I = mass moment of i n e r t i a  of the ring element 
r g  

about its center of gravity (c.g.1 

m ( 6 )  or m ( n )  denotes m a s s  per un i t  length of the  r ing element 

If 

pn = normal impulse 

a = (T - y)s 

= mass moment of i n e r t i a  of the fragment about its c.g. 

1 

2 u1 + u 

u1 - u2 

- 
'r - 2 

= angular velocity of the r ing element w =  r s 

U1,U2 = normal veloci t ies  a t  ring-element nodes 1 and 2 ,  

respectively, immediately before impact 

Uf,wf = fragment c.g. normal-direction velocity and angular 

velocity immediately before impact 
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U;, a;, Ui, U;, U;, w '  = t ranslat ional  normal-direction veloci t ies  f 
and angular veloci t ies  immediately after 

impact (primes indicate  these after-impact 

quant i t ies) .  

Equations 6.1 through 6.5 represent f ive equations expressed i n  terms of the 

f ive  unknowns U;, u;, U;, w;, and pn. 

Next, it is convenient t o  eliminate p by using the Eq. 6.1-value for  n 
p t o  replace p i n  Eqs. 6.2, 6.3, and 6.4 t o  obtain, a f t e r  dividing each 

equation by m 
n n 

f :  

(6.2a) 

(6.3a) 

(6.4a) 

where 

Rewriting and dividing Eq. 6.5 ( the k ine t ic  energy equation) by mf one obtains, 

w i t h  the use of Eq. 6.6: 

I f  t o  the second, th i rd ,  and fourth t e r m s  of Eq. 6.5a, one applies,  respectively, 

Eqs. 6.3a, 6.2a, and 6.4a, one obtains: 
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Next, dividing E q .  6.7 by :[(Ur ' + w;' - 'Ut + wr)l, 

one obtains 

Equation 6.8 states tha t  the velocity a t  the ring-impact point ( C )  re la t ive  

to the velocity a t  the fragment impact point (A) is simply reversed by per- 

fect ly-elast ic  impact, since one may readily ver i fy ,  for  example, t ha t  

u, = ,g+ - m i n e )  df 

uc = ur + ( F - ~ ) s  dr f IJ, + ( U, -Ut ) d  

(6.9a) 

I 
(6.9b) 

Thus, i f  desired,  one may express Eq. 6.8 by the  self-evident notation 

As pointed out i n  Ref. 182 (pg. 4-37), experiments on d i r ec t  central  
impact of spherical  bodies have shown tha t  the re la t ive  veloci t ies 'of  spheres 

a f t e r  impact are always l e s s  than before impact, and tha t  these re la t ive  ve- 

l oc i t i e s  are opposite i n  direction. The r a t io  of the re la t ive  velocity a f t e r  

impact t o  tha t  before impact is called the "coefficient of res t i tu t ion"  and 

is generally denoted as e. 

a perfect ly-elast ic  impact and e = 0 denotes a perfectly-inelastic impact. 

Typically, for  glass e i s  15/16, for  ivory 8/9, s t e e l  and cork 5/9, wood about 

It  is found tha t  0 5 e 5 1, where e = 1 represents 

138 



1/2, and clay and putty O.* Further, it should be recalled tha t  during imper- 

f ec t  impact of two colliding bodies of masses m 

V 

and m2, with i n i t i a l  veloci t ies  

and V2, there is a kinet ic  energy loss  given by 1 

(6.10) 

For the perfectly-elastic case of e = 1, no kinet ic  energy loss occurs. 

e # 1, there is a loss  of kinet ic  energy; however, since the t o t a l  energy 

m u s t  be conserved, the " los t  kinet ic  energy" is simply converted to  other forms 

such as thermal o r  heat energy, etc. 
could be done i n  a complete thenno-mechanical analysis. 

proximate analysis, however, one need npt keep account of th is  kinet ic  energy 

loss.  

For 

A proper accounting of a l l  o f  the energy 

For the present ap- 

, 
Applying the concept of the coefficient of res t i tu t ion ,  e,  to Eq. 6.8, 

one may "generalize" this equation t o  read: 

Final ly ,  one can solve Eqs. 6.2a, 6.3a, 6.4a, and 6 .11 to  obtain ex- 

pressions for  U' , W '  , U;, and w;, the "unknown" after-impact quantit ies.  F i r s t ,  r r  
solving Eq. 6.3a fo r  W '  i n  terms of U; r 

Next, applying Eq. 6.3b t o  Eq. 6.2a and solving for  U; i n  terms of U':  r 

Also, applying Eq. 6.3b to Eq. 6.4a and solving f o r  0; i n  terms of U;: 

(6.2b) 

(6.4b) 

* 
It w i l l  be shown subsequently t h a t  predicted containment ring s t ruc tura l  

sponses t o  fragment impact are insensit ive t o  the value of e employed f o r  
O ( e L 1 .  

re- 
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Finally, applying Eqs. 6.2b, 6.3b8 and 6.4b t o  Eq. 6.11, the following ex- 

pression for U' is obtained: r 

Thus, using E q .  6.12, Eqs. 6.2b, 6.3bb, and 6.4b yield,  respectively, 

(6.12) 

(6.13) 

Since U; = (Vi + U ; f / 2  and id; = (Ui - U;)/s, and s imilar ly  for  the unprimed 

preimpact quant i t ies ,  it follows t ha t  

where - 

(6.16) 

(6.17) 

E Uc - UA = re la t ive  velocity of the impact points: C and A .  

Note tha t  subscript  C of K denotes tha t  t h i s  quantity is associated with the 

- consistent-mass co l l i s ion  model. 
C 
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For this collision calculation, the ring segment is treated as having 

only point masses m and m at nodes 1 and 2, respectively, rather than a 
distributed mass, as indicated schematically in Figs. 39b and 40b. The im- 

pulse-momentum law and the kinetic energy conservation law can be applied to 
this model a150 to obtain: 

1 2 

W f  I U+’-U,I = - p ,  (fragment) 

Kinetic Energy Conservation Law 

where 

(6 l9b) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(see Fig. 40b) (6.24) 

and other quantities retain their previous meanings. 

By using a reduction procedure similar to that described previously and 
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introducing the coefficient of res t i tu t ion ,  e, the following equation which 

is analogous t o  Eq. 6.11 is obtained: 

By following 

obtains 

a solution procedure similar t o  tha t  described previously, one 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

and where a l l  other quant i t ies  re ta in  the i r  previous definit ions.  

6.2.1.3 Governing Equations 

Summarized here, f o r  convenience, are the governing equations of motion 

for both the ring ( target)  s t ructure  and the rotor  blade (fragment). 

Ring-Structure Motion 

As described i n  Subsection 3.2, the governing equations of motion + 
for 

e i ther  a complete r ing o r  a partial-ring s t ructure  may be w r i t t e n  as  follows 

+ 
Note tha t  Eq. 6.31 represents one of the two forms of  the equations of motion 

discussed i n  Subsection 3.2; the second form, Eq. 3.1, could be discussed i n  a 
similar fashion i f  desired. 
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fo r  the spa t i a l  finite-element representation of the Zomplete assembled ais- 

cretized s t ruc ture  (CADS) : 

(6.31) 

where is*),  {q? represent the generalized displacements and gener- 

alized accelerations,  respectively 

[MI is the mass matrix f o r  the CADS 

{PI is an " internal  force matrix" which replaces the 

conventional s t i f fnes s  terms [IC] {q) f o r  small 

displacements but a lso now includes some p las t i c  

behavior contributions 

[HI represents a "new" s t i f fnes s  matrix which arises 

because of large deflections and a l so  p l a s t i c  

behavior 

denotes the externally applied generalized forces 

acting on the CADS 

{F* 1 

I t  should be noted tha t  a l l  quant i t ies  i n  Eq. 6-31 r e fe r  t o  the global 

Y,Z i n e r t i a l  reference system indicated i n  Figs. 41 and 42. 

which the s t ructure  is subjected t o  distributed l inear  restoring springs as 

depicted, fo r  example, i n  Figs. 41 and 42, Eq. 6.31 becomes 

For the case i n  

where [K 1 represents the global effect ive s t i f fnes s  supplied by the e l a s t i c  

foundation and/or other "restraining springs". Further, it is presumed tha t  

Eq. 6.32 has already incorporated within it a l l  per t inent  boundary conditions 

and r e s t r a in t s  as  depicted, fo r  example, i n  Figs. 4% through 42d. 

S 

As discussed i n  Subsection 3.3, the t i m e w i s e  solution of Eq. 6.32 may 

be accomplished by employing an appropriate timewise finite-difference scheme 

such as the central  difference method. Accordingly, fo r  the cases of CIVM 

fragment impact or of prescribed externally-applied forces,  Eq. 6.32 a t  time 
ins tan t  j may be writ ten i n  the following form: 
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j" 
Let it be assumed that all quantities are known at any given time instant t 

Then one may determine the generalized displacement solution at time tj+l(i.e., 

{q*}j+l) by the following procedure. 

difference expression for the acceleration {:*,, : 

First, one employs the timewise central- 

It follows that one can solve for {q*}j+l since {q*} 

Eq. 6.33 and all other quantities in E q .  6.33a are known. Hawever, a fragment- 

t h i s  would require a ring collision may occur between time instants t and tj+l; 
"correction" to the {q*}j+l found from Eq. 6.33a. 

Eq. 6.33a to form a trial value (overscript T) : 

is already known from 
j 

Thus, one uses and rewrites 

where 

(6.3 3b) 

(6.334 

~t = time increment step 

Note that t = j (At) where j = 0, 1, 2, . . . , and {Aq*}o E 0. 

value is needed if only prescribed external forces were applied to the contain- 

ment/deflection ring. 

Also,  no such trial f 

Let it be assumed that one prescribes at t = t = 0 (j=O) values for the 
0 

initial velocities {i*}o and external forces {F*lo, and that the initial stresses 

and strains are zero. The increment of displacement between time t 
is then given by: 

1 and time t 
0 .  

where {q*l0 can be calculated from 

(6.34) 

(6.34a) 

wherein it is assumed that no ring-fragment collision occurs between t and tl 

(accordingly, overscript T is not used on {A$, 
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In  the present analysis,  the fragment is assumed to be undeformable and, 

fo r  analysis convenience t o  have semi-circular ends; hence, its equations of 

motion are: .. 
flf Y, = 0 

9 

= o  

denote, respectively, the global coordinates 

and acceleration components of the center of 

gravity of the gragment (see Fig. 431 

represents the angular displacement of the 

fragment . 
In t h e w i s e  f inite-difference form, Eqs. 6.35 through 6.37 become 

-I- 

T 

T 

\ 

(6.35) 

(6.36) 

(6.37) 

(6; 38) 

(6.39) 

(6.40) 

where overscript  "T" s igni f ies  a tr ial  value which requires modification, as 
and tj+l. explained later, i f  ring-fragment col l is ion occurs between t 

j 

By an inspection procedure t o  be described short ly ,  the ins tan t  of 

ring-fragment co l l i s ion  is determined, and the resul t ing collision-induced 

ve loc i t ies  which are imparted to  the fragment and t o  the affected ring segment 

are  determined i n  accordance with the analysis of Subsection 6.2.1.1 or 6.2.1.2. 

6.2.1.4 Solution Procedure 

The following procedure indicated i n  the flow diagram of Fig. 44 (and 

described also i n  Ref.. 181), may be employed to predict  the motions of the ring 
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and the r ig id  fragment, the i r  possible col l is ion,  the resul t ing coll ision- 

imparted veloci t ies  experienced by each, and the subsequent motion of each . 
body: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

L e t  it be assumed a t  ins tan t  t that the C O O ~ ~ ~ M + ~ S  {q?), Yf , and 
Zf , and coordinate increments {Aq*) j , d Y f ,  a n d A Z  

can then calculate the s t r a i n  increments AE. at a l l  Gauss stat ions j 

along and through the thickness of the ring from E q .  4.25. 

Using a sui table  consti tutive relat ion f o r  the ring material, the 

stress increments Au. a t  corresponding Gaussian s ta t ions can be 
3 

determined from the now-known s t r a i n  increments A& (see Subsections 

2.3 and 4.3.4). Since the u are known a t  t i m e  ins tan t  t 

the stresses a t  t .  are given by u = 0 + AU This information 

permits determining a l l  quantit ies on the right-hand s ide of 

Eq. 6.33, where for  the present CIVM problem IF*) 

being zero. 

Solve ?Sq. 6.33 for  the t r i a l  r ing displacement increments {Aq*)j+l. 

Also, use Eqs. 6.38, 6.39, and 6.40 for  the t r ia l  fragment dis-  

j 3 j  
arekaown. one 

j j f j  

3 

j 

j-1 j-1' 

3 j j-1 j '  

is regarded a s  
j 

T 

1 T r 
placement increments (AYf 1 j+l , (AZf 1 j+l , and (40) j+l* 
Since a ring-fragment col l is ion may have occurred between t .  and 

'j+l, 
termine whether or  not a col l is ion occurred and, i f  so, t o  e f fec t  

a correction of the coordinate increments of the  affected ring 

segment and of the fragment. 

Step 4a: 

3 
the following sequence of substeps may be employed t o  de- 

To check the possibi l i ty  of a col l is ion between the 

fragment i n  the v ic in i ty  of point A of the fragment 

with ring element i (approximated' as a s t ra ight  beam) 

as depicted i n  Fig. 43, compute the t r ia l  projection 

(pi)j+l of the l i n e  from ring node i t o  point A of the 

, fragment, upon the s t ra ight  l i n e  connecting r ing nodes 

i and i-1, as follows, a t  time ins tan t  tj+l: 

T 
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Step 4b: 

s tep  4c: 

where the  Y,Z are i n e r t i a l  Cartesian coordinates. 

Now, examine (pi)j+l; three cases are  illustrated 
T 

i n  Fig. 43a. 

If (pi) j+l < 0 or i f  (pi) j+l> si where si > 0 ,  a 

co l l i s ion  between the fragment near point A and 

ring element i is impossible. Proceed to check 

r ing element i+l, etc. fo r  the poss ib i l i ty  of a 
co l l i s ion  of fragment end A with other ring ele- 

T T 

ments. 

I f  0 5 (p i ) j+ lL  si, a col l is ion with r ing element 

i is possible, and fur ther  checking is pursued. 

Next, calculate the f i c t i t i o u s  "penetration dis- 
tance" (ai)j+l of the fragment a t  end A in to  r ing 

element i by (see Fig. 43b) : 

T 

T 

T 

(6.41) 

where 
I $hli + o(hpi - hli)] = local  semi-thickness of the ring 

element which is approximated as  

a s t r a igh t  beam i n  this "collision 

calculation" 

hf - = t i p  radius of the fragment a t  the 2 
T impactend A 
P i  = f ract ional  distance of s from node i aj+l = \si'j+l i 

to where the co l l i s ion  occurs (recall: 

a + $ = 1, and aj+l should not be con- - 

= &e projection of the  ne connecting 

node i with point A upon a l i n e  per- 

pendicular t o  the line joining nodes 

i and i-1. 
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s tep  4d: 

Step 4e: 

T 
N e x t ,  examine (ai)j+l which is indicated schematically i n  

Pig. 43b and is given by m. 6.42. 

I f  (ai) j+l < 0 ,  no col l is ion of the fragment near point A 

upon element i has occurred during the t ime interval  frcrm 

. Hence, one can proceed to check element i+ l ,  

etc. for  the possibi l i ty  of a col l is ion of fragment end A 

with other ring elements. 

If (ai)j+l > 0 ,  a col l is ion has occurred; corrected coordi- 

nate incr'ements (overscript "CUI may be determined approxi-' 

mately by (see Fig. 43b): 

T . 

t *  3 tj+l 

T 

w h e r e  the after-impact quant i t ies  Ui, v i ,  U;, and "; may 

be found, respectively, from (Eqs. 6.16, 6.17, 6.13, and 
6.15) or from (Eqs. 6.26, 6.27, 6.28, and 6.29), which- 

ever col l is ion model one wishes to  use, and where 

time in te rva l  from actual - impact on r ing elenrent i 

7 
( a; I;+, 

At* = 
until tj+l (6.45a) 
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points A and C (6.45b) 

The terms, i n  Eqs. 6.44a through 6.44g, which are 
multiplied by (At*) represent corrections t o  the 

t r ia l  incremental quant i t ies  fo r  the (At*) time in- 
terval.  Also, since A t  is s m a l l ,  one may use e i ther  

angle (ai) j+r o r  angle (a.) 
6.44g. 

Step 5: Having determined the corrected coordinate increments 

pacted ring element, t h i s  time cycle of calculation is now complete. 

One then proceeds t o  calculate the r ing nodal coordinate increments 

s t a r t i ng  with Step 1. 

for  as many time increments as desired. 

T 
i n  Eqs. 6.44a through 

+ J  

+ fo r  the i m -  

and the fragment coordinates f o r  the time s tep  from tj+l t o  tj+2 , 
The process proceeds cycl ical ly  thereaf ter  

I f ,  however, one finds no co l l i s ion  of fragment end A with any 

of the ring segments, the checking process should be repeated 

fo r  any other possible fragment points of impact (such as end B,  

f o r  example) with the ring. 

This solution procedure may be carr ied out  fo r  as many t h e  steps as 

desired o r  may be terminated by invoking the use of a termination c r i te r ion  

such as, f o r  example, the reaching of a critical value of the s t r a i n  a t  the 

inner surface or the  outer surface of the ring. 

of t h i s  approximate analysis could be m a d e ,  i f  desired,  t o  follow the be- 

havior of the r ing and the fragment a f t e r  the in i t i a t ion  and/or completion of 

loca l  fracturing of the  r ing has occurred. 

Appropriate modifications 

+ It  should be noted tha t  i n  this approximate calculation, only the coordinate 
increments of the fragment and of the impacted r ing segment are corrected. 
Those fo r  a l l  other r ing segments are regarded as already being correct.  The 
t i m e  increment A t  is regarded as being suff ic ient ly  small t o  make these ap- 
proximations acceptable. 
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Although the collision-force m e t h o d  w i l l  be described i n  de t a i l  i n  

Ref. 183, it is perhaps useful t o  outline br ie f ly  the essence of t h i s  approach. 

In  t h i s  method, the primary information predicted i n  the co l l i s ion  analysis 

consists of the collision-induced interact ion forces themselves. One may 

readily identify the following three versions of the method (where the ac- 

companying sketches indicate  the associated qua l i ta t ive  behavior): 

(a) The deformation of the fragment and the ring may be neglected 

i n  the coll ision-interface region. 

a 

Collision During Collision 
starts Interaction Ceases 
t = to tl> t > to t = tl t > tl 

where a denotes the t o t a l  local  deformation of the r ing and fragment 

a t  the center of the impact region ( for  this case a E 0 ) .  
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(b) The fragment and the r ing deform i n  

i n  the collision-interface region. 

a reversible elastic manner 

Collision During Collision 
starts Interaction Ceases 
t = to tl > t > to t = tl t > tl 

t Impact 
Force 

This reversible e l a s t i c  loca l  indentation a is related to  the 

impact force F by the Hertz Law: F = kU3’2 where k is a con- 

s t an t  found from the elastic properties of the coll iding ma- 

terials. 
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(c) The fragment and the ring may deform i n  a general elastic- 
p l a s t i c  fashion i n  the collision-interface region. 

Collision During 
starts Interaction 
t = to tl > t to 

Collision 
Ceases 
t * tl t > tl 

Impact 
Force 

Here both the ring and the fragment exhibit  permanent deforma- 

t ion  i n  the “col l is ion zone“; for  t h i s  s i tuat ion the impact 

force may be expressed approximately by F = Nu where N and 

n are constants depending upon the properties of the coll iding 

materials. 

n 

For a l l  of the CIVM cases and CFM cases (a), (b ) ,  and (c), the containment 

rings may undergo elast ic-plast ic  membrane and bending behavior. 
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6.3 Application and Evaluation of the CIVM Approach 

Described i n  this subsection is a set of very limited calculations i n  

The calculations have involved the which the CIVM approach has been employed. 

impact of a single rotor  blade (fragment) against: (a) a complete f r ee  circu- 

lar  containment r ing and (b) a "fragment-deflection" r ing  quadrant which is 
supported a t  a selected s ta t ion  i n  one of several  ways. 

t ions serve to i l l u s t r a t e  minimally (1) the e f f ec t  of the type of co l l i s ion  

model (consistent mass, CM, o r  lumped mass, LM) , (2) the  effect of the coef- 

f i c i e n t  of r e s t i t u t ion  e, (3) the e f fec t  of plausible ring material s t ra in-  

rate behavior, (4) calculation convergence with an increasing number of r ing 

elements, and (5) preliminary comparisons with experimental response data fo r  

a complete f r ee  r ing subjected to impact by a single-blade fragment. 

s tudies  are described i n  the following. 

These brief calcula- 

These 

6.3.1 Definition of Example Problems and Calculations 

To illustrate the CIVM approach, the two categories of example problems 

depicted schematically i n  Fig. 45 w e r e  analyzed: (a) a f r ee  canplete c i rcular  r ing 

subjected t o  impact from a single-blade fragment, as represented by the con- 

d i t ions  pertaining t o  experiment i n  NAPTC Ring Tests 88 and/or 91 (Ref. 177) 

and (b) a r ing quadrant chosen to  represent an example deflection device and 

a l so  subjected t o  single-blade impact. 

liminary experimental r ing response and blade motion data  [from NAPTC Ring 

T e s t s  88 and 91, with the latter being the more re l iab le)  are  available for  cam- 
parison with predictions. 

ring-quadrant cases. 

For the complete-ring example, pre- 

Howeverr experimental data are not available for  the 

Summarized i n  Table 1 are the per t inent  geometric and test-condition 

data  for  NAPTC Ring T e s t s  88 and 91. The (complete) f r ee  containment ring con- 

s i s t ed  of 2024-T4 aluminum; fo r  analysis,  its uniaxial  static s t ress-s t ra in  be- 

havior w a s  approximated (closely) as being e l a s t i c ,  perfectly-plastic (EL-PPI 

with a yield stress Oo of 50,000 p s i  and an elastic modulus of 10 

s ingle  T-58 rotor  blade which w a s  fabricated from material designated as SEL-15 

by General Electric w a s  the  fragment employed; for  the present analysisr  t h i s  

"fragment" is t reated as  being rigid.  For the ring-quadrant examples, the Same 

7 psi.  A 
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geometric, material property, and test conditions were employed as f o r  the 
T e s t  88 complete-ring example. 

Shown i n  Tables 2 and 3 are the characterizing data fo r  the sequence of 

CIVM calculations carried out for, respectively, (1) the s w l e t e  ring -- 
Runs CR-1B through CR-llB, and (2) the  r ing 3uadrant examples -- Runs FQ-D 

through RQ-9B. 

pertinent t o  NAPTC T e s t  88 w e r e  used; NAPTC T e s t  91 conditions w e r e  used f o r  

calculation Runs CR-8B through CR-1lB. 

For a l l  cases except CR-8B through CR-llB, the conditions 

Shown i n  Table 2 fo r  the complete-ring problem are (a) the number of 

segments i n to  which each quadrant of the ring w a s  d iscret ized for analysis,  

(b) the  interpolation function used t o  represent the displacement f i e l d  

throughout each ring element (the Lineax dis t r ibut ion of the inplane dis- 

placement together with a p b i c  dis t r ibut ion of the transverse displacement 

is termed LC; the cubic dis t r ibut ion of both the inplane and transverse dis- 

placement along each r ing f i n i t e  element is termed CC fo r  cubic cubic), (c) 

the type of mass matrix used f o r  each ring element (the mass matrix which is 

variationally consistent with the assumed displacement f i e l d  is termed C and 

the l~ .ped-mass  matrix is termed L) , (d) the r ing m a t e r i a l  property represen- 

ta t ion (e las t ic ,  perfectly p l a s t i c  EL-PP, or EL-PP-SR, where SR denotes 

s t ra in-rate  sensi t ive behavior), (e) the type of co l l i s ion  model employed 

(consistent m a s s ,  CM, o r  lumped mass, LM) , and ( f )  the coeff ic ient  of *act 

res t i tu t ion  e,  where e = 1 represents a perfectly-elastic impact and e = 0 

denotes a perfectly-inelastic impact. 

For the partial-ring or ring-quadrant cases, T a b l e  3 ident i f ies :  (a) 
the number of equal-length segments i n to  which the r ing quadrant w a s  idealized 

fo r  analysis,  (b) the type of mass matrix used for  each r ing f i n i t e  element 

(L or C )  , (c) the  type of support ( ideally clamped I C ,  o r  smoothly hinged), 

and (d) the type of co l l i s ion  model (CM or LM) used. For a l l  cases, the IC 
type assumed-displacement function over each r ing f i n i t e  element, EL-PP-SR, . 
and e = 1 conditions w e r e  used i n  these calculations. 

The various matters examined i n  these studies are described i n  the 

f ollcming . 
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The two types of idealized collision models, consistent-mass CM and 

lumped-mass Ll4, discussed in Subsections 6.2.1.1 and 6.2.1.2, respectively, 

have been employed in example calculations to examine their behavior and rela- 

tive merits. 

First, consider the CM collision model. A comparison of ring quadrant 

calculations RQ-1B vs RQ-2B (see Table 3) have illustrated dramatically the un- 
desirably sensitive nature of the CM collision model. For case RQ-lB, the 

ring quadrant was modeled by 9 equal-length segments while for case RQ-2B, 10 

equal-length segments were employed; in all other respects the conditions were 

the same: the same fragment properties and initial conditions, the ring materi- 

al properties EL-PP-SR, and e = 1 for the coefficient of restitution were em- 

ployed. Dispite this slight change in the modeling of the ring (from 9 to 10 

equal-length elements), the resulting responses of the ring quadrant and of the 

blade fragment were dramatically different (see Fig. 46) when the CM model was 

employed. Increasing the number of segments to 15 to model the ring quadrant 

in case RQ-3B resulted in ring quadrant and blade responses that also differed 

significantly from the 9-element case but very little fxom the 10-element case. 

These results illustrate the sensitive nature of the CM collision model. 

On the other hand, the use of the LM collision model for identical ring- 

quadrant modelings: 9, 10, and 15 elements for cases RQ-4B, RQ-SB, and RQ-6B, 

respectively, demonstrated improved convergence and much less sensitivity to 

the number of segments (elements) used to model the ring quadrant. These re- 

sults are illustrated in Fig. 47. Note that the 9-element result differs some- 

what from the 10-element result, but the 10-element result and the 15-element 

result are nearly the same; this suggests that the 10-element calculation pro- 

vides a "converged" solution. Because of the greater consistency of the LM 

collision model in comparison with the CM collision model, the LM collision 

model has been selected for principal use, although additional CM collision 

calculations have alsc been carried out. 

Similar predicted ring response and blade response behavior for single- 

blade impact upon a 'free complete ring is illustrated in Fig. 48. CM collision 
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model cases CR-lB and CR-3B f o r  ring discret izat ions 5-5-5-5 and 9-6-6-6, 

respectively, are compared w i t h  LM col l i s ion  model case CR-58 which u t i l i z e s  

r ing discret izat ion 10-6-6-6 (see T a b l e  2 ) ;  the latter calculation is assuxned 

to provide a converged resul t .  H e r e  again the CM resu l t s  appear t o  exhibi t  

somewhat "erratic" behavior. 

An approximate col l is ion model which leads to very d i f fe ren t  resu l t s  

when only a s l i gh t  change i n  modeling of the r ing is employed is undesirable 

and unacceptable. 

such extreme sens i t iv i ty  to a s l igh t  change i n  the discret izat ion modeLing of 

a containment r ing or of a "deflector" r ing structure.  Accordingly, the CH 

col l is ion model has been set aside and the LM col l is ion model has been adopted 

for  future calculationsunti1 a better model has be- devised. 

A trustworthy approximate co l l i s ion  model should not exhibit 

The reasons for  the erratic CM col l i s ion  model behavior versus the more 

sat isfactory LM col l i s ion  model features may be seen most conveniently perhaps 

by examining the collision-imparted velocity behavior of the blade and the 

affected ring element. 

idealized by a straight-l ine beam element (for the impact-collision calcula- 

t ion  only). 

mass rn is struck by the  blade t i p  a t  a point very near one end of  the  beam 

element ( for  example, near node 1, see Fig. 40) , i n  which case a = 0 and 6 = 1; 

assuming that the normal impulse result ing from the co l l i s ion  is p , the blade 

c.g. normal-direction velocity change and angular velocity change due to impact 

are  given by Eqs. 6.2 and 6.4 (also Eqs. 6.20 and 6.22) as 

It should w recalled that the r ing element w a s  

Consider the case i n  which the uniform beam element with length 5 .  

r' 

n 

where the angle e is the incl inat ion of the blade to the normal of the beam 

element. 

The beam nodal velocity and the angular velocity changes predicted by 

the CM col l i s ion  m o d e l  (Eqs. 6.14, 6.16, and 6.17) fo r  a co l l i s ion  occurring a t  
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(6.47a) 

(6.47b) 

On the other hand, the LM col l i s ion  model predicts the beam nodal velocity and 

angular velocity changes (Eqs. 6.26, 6.27) to  be 

A 

Comparing Eq. 6 . 4 7 ~  with Eq. 6.4&, it is seen tha t ,  fo r  a cer ta in  normal im- 

pulse p,, the  angular velocity change predicted by the CM model would be s i x  

times larger  than that predicted by the LM model. 

change of the or ientat ion of the beam segment for  the CM model compared with 

tha t  fo r  the LM model may subsequently lead to  the larger  change of the angle 

8, and hence, the angular velocity change of the blade (see Eq. 6.46b) for  the 

subsequent impact(s) of the blade with the beam element w i l l  a lso be more 

seriously altered.  As observed i n  Fig. 46, the use of the CM col l i s ion  model 

with lo-element and 15-element modeling of the r ing quadrant, a f t e r  a cer ta in  

t i m e  stage, predicts  t h a t  the angular velocity of the blade becomes negative 

This larger~consequent 
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(the direction of rotat ion is reversed). 

blade rotat ion is predicted when the LM col l i s ion  model is used i n  corresponding 

10-element and 15-element calculations for  the quadrant ring. 

No such reversal  of the direction of 

The above example case may serve t o  i l l u s t r a t e  (a) the re la t ive  insensi- 

t i v i ty  of the LM vs the CM idealized co l l i s ion  analysis and (b) associated 

sources of the differences i n  predicted co l l i s ion  behavior. 

Finally,  it should be noted tha t  a t  i n i t i a l  impact: (a) the angle 6 be- 

tween the blade and the normal t o  the impacted ring segment and (b) the loca- 

t ion of the impact point on that impacted s t ra ight- l ine collision-model ring 

segment (as reflected by the associated values of ff and 8) w i l l  be d i f fe ren t  

when one uses d i f fe ren t  numbers of ring segments t o  represent the ring. 

the number of r ing segments increases, 6 w i l l  approach the t r u e  value for  the 

ring i tself ,  b u t  ff and 6 w i l l  continue t o  "fluctuate". These factors  to- 

gether with the sens i t iv i ty  of the CM col l i s ion  model are responsible fo r  the 

s ignif icant  difference i n  predicted blade motion between the 9-element CM 

case RQ-IE and the 10-element CM case Rp-2B. 

A s  

6.3.3 Effect of Coefficient of Resti tution 

As noted i n  Subsection 6.2.1.1, the coeff ic ient  of res t i tu t ion  e is a 

useful  quantity for  discussing "local impact" of two colliding bodies, since 

th i s  quantity represents the r a t i o  of the re la t ive  velocity of the two bodies 

a f t e r  impact t o  tha t  before impact. 

by e = 1 whereas e = 0 denotes perfectly-inelastic imp& (i.e., zero re la t ive  

Velocity a f t e r  impact). 

t ransient  s t ruc tura l  deformations of a fragment-impacted s t ructure  such as the 

containment r ing depicted i n  Fig. 45a is not obvious. 

Perfectly e l a s t i c  impact is  represented 

However, the importance of the value of e upon the 

TO examine this matter, CIVM calculation examples have been 'carried out 

by using e - 1 and e = 0 i n  (1) cases CR-1B and C R - B ,  respectively, ( 2 )  cases 

CR-5B and CR-6B, respectively, and (3) cases CR-1OB and CR-11B, respectively. 

Although these three categories of comparisons involved somewhat d i f fe ren t  

modelings, as can be seen from Table 2 ,  it w a s  found t ha t  to the scale of the 

plots  shown on Fig. 48, the differences i n  r ing s t ruc tura l  responses for  e = 1 

V s  e = 0 i n  each category are  almost imperceptible. A more critical comparison, 
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however, is afforded by examining the predicted strains a t  given locations; 

shown i n  Fig. 49 are s t r a ins  predicted on both the outer surface and the inner 

surface of the r ing  a t  t w o  interest ing &locations (8 = 13.5O and 8 = 49.P)  

f o r  case CR-1OB (e = 1) and fo r  case CR-11B (e 5 0) -- these cases involve the 

best  combination of modeling conditions of a l l  cases listed i n  Tab le  2. It  is 

seen that generally the circumferential s t r a ins  predicted for  e = 1 are s l igh t ly  

larger  than when e =I 0 is employed. 

occurs a t  8 = 44.5'; i n  regions or quadrants w e l l  removed from the impact zone 

or quadrant, the predicted strains are very s m a l l .  For example, a t  8 = 233*, 

the peak outer surface s t r a in  is only about 3.35 x 

It should be noted that in i t ia l  impact 

in/in. 

Another interest ing e f f ec t  of the coeff ic ient  of r e s t i t u t ion  is tha t  the 

number of ring-fragment col l is ions which has occurred up to a given ins tan t  

i n  time a f t e r  i n i t i a l  impact is much larger  for  perfect ly  inelastic:  impact 

(e = 0) than fo r  perfect ly  elastic impact (e = 1). T h i s  is i l lus t ra ted  i n  

Fig. 50 where the accumulated number of impacts ( A N I )  is shown as a function 

of time a f t e r  i n i t i a l  impact f o r  cases CR-1OB and CR-11B. 

impact, e = 1 (case CR-lOB), the ANI reached 73 by 370 microseconds a f t e r  in i t ia l  

impact; no fur ther  ring-fragment impacts occurred thereafter (at least during 

the period t o  818 psec a f t e r  i n i t i a l  impact, during which the response w a s  ex- 

amined i n  these calculations).  On the other hand, fo r  perfectly-inelastic im- 

pact, e = 0 (case CR-11B), the ANI  reached 377 by 392 microseconds a f t e r  initial 

impact, with no fur ther  impacts occurring to  a t  least 818 psec a f t e r  in i t ia l  
impact. 

For perfectly-elastic 

The large ANI for  the perfectly-inelastic case (e = 0 )  as compared w i t h  

the perfect ly-elast ic  co l l i s ion  calculation (e = 1) may be readily appreciated 

by recal l ing t h a t  fo r  e = 0, the re la t ive  velocity of the contact points of the 

blade and the impacted r ing segment are zero. For the next time increment, A t ,  

of the prediction process, the r ing and the  blade are t reated in a t r ia l  incre- 

mental calculation as moving independently of each other. Thus, the motion of . 

the impacted r ing segment is "retarded" by the act ion of the internal  forces 

applied to it by its neighboring r ing elements, while the fragment proceeds 

w i t h  "uninhibited" motion. The subsequent co l l i s ion  inspection, therefore,  

frequently reports that during t h i s  A t  another co l l i s ion  has taken place -- and 
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the process continues. 

pact points of these two objects occurs; subsequent col l is ions,  hence, are less 
frequent. 

But for  e = 1, a nonzero re la t ive  velocity of the im- 

It is interest ing a l so  to note i n  the following tabulation tha t  a f t e r  the 

impacts have ceased, the blade has somewhat d i f fe ren t  cg-translational and ro- 
ta t iona l  veloci t ies  fo r  the e = 1 case as compared with the e = 0 calculation: 

Pre-Impact 
Conditions 
of Blade 

- 7884 

0 

+ 1638.3 

0 

- 

r-- Blade Motion Quant i t ies  

After Impacts have Ceased 

e = l  e = O  

Case CR-1OB Case CR-11B 

- 2826.8 - 2138.4 

- 3038.2 - 3015.4 

+ 3137.5 + 3015.4 

+ 111.4* + 105.9** 

+ 192.0 + 170.3 

V (in/sec) 

v (in/sec) 

wf(rad/sec) 

af (deg) 

Y 

z 

I a,(deg) a t  TAII = a i8  psec 

It is seen tha t  a f t e r  a l l  impacts have ceased, the blade has larger cg- 

t ranslat ional  (V and V ) and rotat ional  (w ) veloci t ies  fo r  the e = 1 case 

than fo r  the e = 0 case. 

longer times, it is clear from the  fragment and ring motions tha t  fur ther  

blade-ring col l is ions would have been seen. 

Y z f 
Finally,  had these calculations been carried out for  

6.3.4 S t ra in  Rate Effect 

In  the present analysis the fragment (blade) is treated as being r ig id ,  

Thus s t ra in-rate  dependent mechanical but the containment r ing is deformable. 

behavior of the ring can be taken in to  account, and is expected t o  influence 

primarily the response of the r ing and secondarily the motion of the fragment. 

As described i n  Subsection 2.3.3, it is asswed herein that s t r a in  rate 
&.ra i ses  the uniaxial  yield point of the material, approximately as follows: 

I 

A t  time a f t e r  i n i t i a l  impact ( T A I I )  = 370 psec, or time = 552 + 370 = 922 Usec 

A t  TAII = 392 psec 
** 
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where 

u 

Go = static uniaxial  yield stress 

= st rain-rate  dependent uniaxial yield stress 
Y 

and D and p are constants which depend upon the material involved. 

aluminum, D = 6500 sec 

employed i n  the cases denoted by SR ( in  EL-PP-SR) i n  T a b l e s  2 and 3. It is also 

assumed tha t  the elastic modulus of the material a t  room temperature conditions 

is not affected by &. 

For 6061-T6 
-1 and p = 4 are commonly used; these values have been 

The ef fec t  of E i n  the ring-blade problem can be seen by conparing the 

predicted r ing and blade responses for  case CR-5B (EL-PP) versus case CR-7B 

(EL-PP-SR); these cases a re  ident ical  except fo r  the inclusion of the s t ra in-  

rate e f f ec t  i n  case CR-7B. 

the inclusion of the h e f fec t  i n  case CR-7B manifests i t s e l f  i n  making the 

r ing "s t i f fe r"  than i n  ca8e CR-SB (EL-PPI; the peak deformations of the ring 

were reduced s l igh t ly  by including the b effect .  

the mare detailed &-affected structural responses described i n  detail  i n  Sub- 

section 5.3 .6 .3 .  

L e t  it suff ice  fo r  present purposes t o  note that 

The r e su l t  is i n  accord with 

Finally,  some blade-motion data (which is of secondary in te res t )  for  

cases CR-SB and CR-7B are compared i n  Tab le  4; these include the fragment cg- 

velocity components V and V and the angular velocity w of the fragment 

(blade). 

blade for  the EL-PP and the EL-PP-SR calculations are very similar. In  f ac t ,  

the "residual" veloci t ies  of the blade a f t e r  no fur ther  impacts occur (up to 

a t  least TAII  = 818 psec) d i f f e r  only s l igh t ly  a re  are as follows: 

Y 2 f 
From Table  4 it is seen tha t  the predicted velocity h is tor ies  of the 
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TAI1 for IWI v (in/sec) v (in/sec) uf(rad/sec) Case Last Impact Y z 
(vsec) r 

CR-5B 348 89 - 2791.0 - 2999.4 + 2611.7 
EL-PP 
e = l  

CR-7B 327 47 - 2912.0 - 2991.3 + 2621.5 
EL-PP-SR 
e = l  

The most  in terest ing difference i n  these r e su l t s  is t h a t  the accumulated number 

of impacts to "impact cutoff" is 89 and 47 for the  E&-PP case and the EL-PP-SR 

case, respectively. T h a t  is, the inclusion of "strain-rate st iffening" of the 

ring reduced the predicted number of impacts (up to a t  least T A I I  = 818 usec); 
t h i s ,  incidentally,  reduces the computational e f f o r t  and time. 

6.3.5 Comparison of Predictions with Experiment fo r  a 

Complete Free Ring Subjected t o  Rotor B l a d e  Impact 

Having examined the e f fec ts  of various features i n  the CIVM approach 

and various modelings of a f r ee  complete c i rcular  "containment ring" subjected 

to impact by a "nondeformable" s ingle  rotor blade, it is now perhaps of in- 

terest t o  compare predictions with measurements from NAFTC Tests 88 and 91 

(see Table 1). These comparisons are regarded as tentat ive because of the 

facts that:  

the time f r o m  the ins tan t  of i n i t i a l  impact u n t i l  the 

"time instant"  of each photograph i n  each experiment 

is uncertain by as much as, perhaps, about 200 to 300 

microseconds* (that is, i n i t i a l  impact may have occurred 

earlier than reported i n  Ref. 184 by about 200 to 300 

psec) and 

the present CIVM analysis contains some simplifying 

assumptions which expedite the  present study but 

which do not accoxnodate some aspects of the an t ic i -  

pated and observed behavior (these deficiencies could 

be remedied i n  future  work). 

This uncertainty w i l l  be essent ia l ly  eliminated i n  planned forthcoming tests 
of t h i s  type through the use of improved techniques. 
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The predictions discussed i n  t h i s  subsection are limited to only the 

best two calculation cases f o r  each experiment, Tests 88 and 91. 

shown i n  Fig. 51 are deformed-ring prof i les  and blade locations a t  a sequence 

of times for:  experiment (NAPTC T e s t  88) , case CR-SB (EL-PP, e = 1) , and case 

CR-7B (EL-PP-SR, e = 1). The plotted points represent the locations of the 

node points o r  ends of the f i n i t e  elements or  segments i n to  which the ring 

has been discret ized for  analysis .  

the i n i t i a l  impact location was matched t o  tha t  observed experimentally. 

is seen tha t  there is reasonably good agreement between predictions and ex- 

periment, with calculation case CR-7B providing the better comparison. In  

Fig. 51, the time in te rva l  between the "instant of impact" and the photograph 

for  which the deformed-ring data were measured is as reported i n  Ref. 184. 

Accordingly, 

For comparing predictions with experiment, 

It 

Figure 52 shows a similar comparison between predictions and experimental 

results measured f o r  NAPTC T e s t  91; the predictions are for  case CR-1OB (EL-PP-SR, 

e = 1) and case CR-11B (EL-PP-SR, e = 0 ) .  Hence, seen again are the effects  of 

perfectly-elastic impacts (e = 1) versus perfectly-inelastic impacts (e = 0); 

on the scale of Fig. 52, t h i s  coefficient-of-resti tution e f fec t  is  minor. Here 

a l so  (1) it is seen t h a t  the predictions agree favorably with experiment, and 

(2) the "experimental ins tan t  of impact" used is as reported i n  Ref. 184. 

A preliminary assessment i n  Ref. 185 of the Ref. 184 data fo r  N A P E  

T e s t s  88 and 91 suggests t ha t  the actual ins tan t  of impact i n  each case may 

have been s ignif icant ly  earlier than reported i n  Ref. 184. 

fo r  example, it w a s  estimated i n  Ref. 185 t h a t  the actual ins tan t  of impact w a s  

perhaps about 200 t o  300 microseconds earlier than implied i n  the experimental 

data of Fig. 52 and Ref. 184. Hence, as a matter of curiosi ty ,  an "impact time 

correction" of 240 usec has been applied t o  the NAPTC T e s t  91 data and the re- 

sul t ing comparisons with the case CR-1OB predictions are shown i n  Fig. 53. It 

is seen tha t  the predicted r ing responses are somewhat larger  than the T e s t  91 

data show when a revised ' instant  of i n i t i a l  impact is used. 

the beginning of t h i s  subsection, t h i s  discrepancy may possibly be due t o  the 

uncertainty of the time elapsed from the instant  of actual i n i t i a l  impact t o  

the "test-recorded" in i t ia l  impact ins tan t ,  and may also be due t o  the simpli- 

fying assumptions employed i n  the present approximate predictions. 

For NAPTC Test 91, 

As mentioned i n  

Further 

163 



experimental and theoret ical  studies of this si tuat ion are required. 

With reference t o  the resu l t s  shown i n  Figs. 51-53, it is seen that the 

predicted r ing responses agree f a i r ly ,we l l  with experiment, but the observed 

blade motion (which is  of secondary in t e re s t  i n  the present context, but of 

considerable in t e re s t  i n  other s i tuat ions)  is not i n  sat isfactory agreement 

w i t h  experimental observations. 

deflection, e las t ic-plast ic  t ransient  response analysis  has been evaluated 

and its accuracy ver i f ied by comparison with re l iab le  experimental data i n  

Subsection 5.3 and, hence, is not a source of s ignif icant  error.  However, 

one source of error  is readily apparent: i n  the experiments, the rotor  blade 

undergoes a s ignif icant  amount of deformation over a portion of its length a t  

and near the "impact t i p"  during a brief period following i n i t i a l  impact; 

l i t t l e  further blade deformation is observed a t  l a t e r  t i m e s .  The blade, hence, 

becomes a shortened fragment with a smooth curved portion a t  one end while the 

other end essent ia l ly  retains i ts  pre-impact configuration. Accordingly, the 

"new" fragment which continues the blade-ring interact ion process often has 

the same mass as before but has a reduced moment of i ne r t i a  -- t h i s  factor  

probably accounts for  much of the discrepancy between the observed and the pre- 

dicted blade motion. Other neglected factors which may contribute t o  the ex- 

perimental-theoretical discrepancies include: (a) the neglect of the t r u e  ma- 
terial properties of the blade i n  the col l is ion calculation i t s e l f  (but t h i s  

should be minor as  r e su l t s  from the e = 1 and e = 0 extremes show) and (b) 

forces ar is ing with and energy loss  by gouging the ring by the blade. 

A s  f o r  the r ing i t s e l f ,  the method of large 

6.3.6 Fksponses of a Variously-Supported Rinq 

Quadrant to Rotor Blade I m p a c t  

As noted i n  Subsection 6.3.1 and i n  Figs. 36b and 45b, pa r t i a l  r ings are 
of i n t e re s t  as possible fragment deflection devices. Accordingly, i l l u s t r a t ive  

calculations have been carried out f o r  cer ta in  r ing quadrant configurations 

(see Fig. 45b) subjected to impact by a single rotor  blade. These ring-quadrant 

configurations are supported i n  one of the three following ways: (1) ideal ly  

clamped (IC) a t  8 = O o ,  ( 2 )  smoothly hinged (H) a t  @ = O o ,  or (3) smoothly 

hinged (H)  a t  8 = 2 7 O .  The per t inent  CIVM calculation features are sumarized 

i n  Table 3, and include cases FQ-1B through FQ-9B; ident ical  "blade release" 
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conditions a t  t = 0 are used fo r  a l l  cases. 
Tab le  1 w e r e  used for  these calculations. 

available for  comparison with these predictions. 

The T e s t  88 conditions reported i n  
N o  experimental data,  however, are 

For the ideally-clamped quadrant r ing,  the predicted ring quadrant and 

blade responses have already been noted fo r  cases RQ-1B through RQ-3B and cases 

IEQ-4B through W-6B i n  Figs. 46 and 47, respectively. The r e su l t s  from case 
RQ-7B d i f f e r  l i t t l e  from those of case RQ-6B and hence are not shown here. 

Compared i n  Fig. 54 are the responses of quadrant r ings with an ideally- 

clamped end (case RQ-5B) and a smoothly-hinged end (case RQ-8B). These responses 

exhibi t  the expected qua l i ta t ive  differences. The "blade diversion angle" 

(4, see Fig. 46b) is predicted t o  be approximately 42.6O 

RQ-SB and the hinged-end case RQ-8B. 

o r  both the I C  case P 

The influence of locating the smoothly-supported hinge a t  e = 27O 

(case RQ-9B) rather  than a t  the end, e = Oo,  of the quadrant r ing is  depicted 

i n  Fig. 55 by the  sequence of deformed r ing quadrant configurations for  case 

RQ-9B. For t h i s  case, the rotor  blade cg-trajectory diversion angle Cp is 

43.30. 

These examples, RQ-1B through FQ-9B, i l l u s t r a t e  only a few of the many pos- 

s ib l e  s i tuat ions (various r ing boundary conditions, various fragments, etc.)  and 

configurations (variable thickness ring, etc.)  which may be worthy of study fo r  frag- 

ment deflection purposes, and to which the CIVM analysis can readily be applied. 

6.4 Comments on Potent ia l  Extensions of the CIVM 

Approach t o  More Complex Problems 

I n  t h i s  report  the CIVM approach has been i l l u s t r a t ed  and applied t o  only 

a few (see Fig. 45) of the many s i tuat ions of in te res t ;  a l so ,  some simplifying 

approximations have been employed. 

been used, ra ther  than (a) many fragments (Fig. 37c) o r  (b) a fragment of 

complex geometry (Fig. 37b); the useful but drastic simplifying assumption tha t  

the fragment acts as a nondeformable body w a s  employed. A t  t h i s  point it is 

useful perhaps to comment br ie f ly  on s teps  which might be taken within the CIVM 

context t o  perform a more physically-realist ic analysis and/or to analyze con- 

tainment/deflection devices which a re  subjected to more complicated fragments 

One fragment having a simple shape has 
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and/or conditions. 

It  is convenient fo r  discussion to consider two categories of problems: 

(1) those i n  which various kinds and numbers of fragments are involved but i n  

which the fragments are a l l  nondeformable and (2) a category analogous to (1) 
except t h a t  all of the fragments are treated as deformable. There could a l so  

be analyses i n  which f o r  a cer ta in  period of time i n  the impact-interaction- 

response behavior, the fragment(s) is regarded as deformable, and i n  another 

appropriately-selected time period as nondeformable. 

ing problems i n  which a l l  motion and defonaations occur i n  one plane (planar 

problems) as is the case throughout t h i s  report ,  more general motion and de- 

formation conditions could be analyzed. However, discussion herein sha l l  be 

rest r ic ted to planar problems. 

I n  addition to consider- 

F i r s t ,  l e t  a t tent ion be directed t o  cases involving only nondeformable 

fragments. Beyond the simple single-fragment problems depicted i n  Fig. 36, 

one could apply the CIVM approach readi ly  t o  analyze the interact ion with con- 

tainment-deflection rings of complex single fragments such as those shown i n  

Fig. 37b or multiple fragments such as shown i n  Fig. 37c. Only the bookkeeping 

becomes more complicated and lengthy than for  the Fig. 36 category of problems; 

no conceptual or analyt ical  d i f f i cu l t i e s  are  anticipated. I f  i n  addition to 

interacting with the r ing (and/or with each other) the fragment(s1 col l ide 

with one or more blades of the "remaining" rotat ing rotor  and hence receive a 

new kick, the bookkeeping becomes s t i l l  more lengthy and complex, but no basic 

d i f f icu l ty  i s  anticipated. However, as noted earlier, t reat ing the fragment(s) 

as nondeformable w i l l  lead t o  progressively less accurate blade-fragment motion 

and accordingly to less reliable predictions of subsequent blade-rotor col l is ions,  

blade-ring col l is ions,  and r ing s t ruc tura l  response. How important this ef fec t  

w i l l  be upon the predicted containment/deflection capabili ty of a given system 

cannot be ascertained a t  present. However, it is  believed that some modification 

of the analysis should be made t o  provide more accurate blade-motion predictions 

for  the time period following the i n i t i a l  coll ision-interaction of the fragment 

w i t h  the  containment/deflection ring than is currently afforded by the present 

rigid-fragment analysis. 

Next, therefore, it is appropriate t o  consider modifying the analysis 
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t o  account for  deformable fragments. 

configurations of Fig. 36, one could proceed logical ly  t o  treat the blade as 
deformable by modeling it as consisting of an appropriate number of f i n i t e  

elements (or segments). While somewhat more complex inspection procedures 

would need t o  be devised to determine when and where ring-fragment col l is ions 

would occur, the same basic coll ision-interaction calculation as  now employed 

could be used; as done fo r  the ring i t s e l f  a t  present, the blade could be 

t reated as behaving i n  an EL-SH-SR manner. I n  this scheme finite-element 

modeling of both the r ing and the blade could be employed throughout the analy- 

sis from i n i t i a l  impact u n t i l  a l l  impact/interaction behavior of i n t e re s t  had 

occurred; more degrees of freedom and more computing t h e  than currently needed 

i n  the present rigid-blade analysis would be involved. 

perhaps be effected by t reat ing the blade as deformable i n  the i n i t i a l  impact 

stage and a t  other critical coll ision-interaction stages,  and by t reat ing the 

blade as nondeformable fo r  the "in-between" periods. 

Star t ing with the simple single-fragment 

Some economies could 

Another useful var iant  of t h i s  analysis extension might be to treat the 

r ing always and the fragments (always or  "intermittently") as deformable but 

t o  treat the st i l l-spinning rotor  d isk  and the remaining attached rotor  blades 

as nondeformable. 

for  both accuracy and computational efficiency. 

Further study is  needed to determine an o p t h m  analysis mix 

Finally,  cognizance should be taken of one aspect of the immediate col- 

l i s i o n  analysis which should be improved -- the seriousness of t h i s  defect w i t h  

respect t o  predicting e f f i c i en t ,  assured containment is not ent i re ly  clear. 

In  the present study, the fragment-ring co l l i s ion  has been idealized as a process 

' i n  which the applied and reactive forces could occur only i n  a direction per- 

pendicular to the surface of the impacted ring segment. 

may be a very good approximation; f o r  other cases (where gouging of the ring by 

the blade is imminent or present, for  example), there would be also both applied 

and reactive force components i n  a direct ion para l le l  t o  the surface of the ring. 

Hence, a mcidification of the col l i s ion  analysis  to predict  and t o  take in to  

account such "shearing forces" -- as i n  machining and tool-wear s tudies  -- would 

be a useful s tep  toward a more r e a l i s t i c  simulation of the actual physical s i tu-  

a t ion fo r  cer ta in  cases. 

For cer ta in  cases, t h i s  
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SECTION 7 

SUMMARY AND CONCWSLONS 

7.1 Summary 

The present study is devoted principally t o  developing and validating a 
spa t ia l  finite-element (FE) variational method fo r  analyzing the large-deflection 

elast ic-plast ic  t ransient  deformations of simple structures,  As a resu l t ,  ac- 

curate FE predictions of t ransient  s t ra ins  and large t ransient  deformations of 

simple structures subjected t o  known forcing functions have been demonstrated 

(see Section 5 and Subsection 7.2). A pract ical  problem t o  which the present 

method of analysis has been applied is tha t  of containment/deflection struc- 

t u r a l  r ing responses t o  engine rotor-blade fragment impact. 

The equations which govern the large deflection dynamic and/or static 

responses of a sol id  continuum are discussed i n  tensor form fo r  convenience and 

generality. Elast ic ,  e las t ic-plast ic ,  and s t ra in-rate  dependent material be- 

havior a re  considered. Under the res t r ic t ion  tha t  the s t r a i n  is small, con- 

siderable simplification is attained by assuming that the s t r a i n  can be de- 

composed in to  an e l a s t i c  (thermodynamically reversible) part and a p l a s t i c  

(thermodynamhally i r revers ible)  part .  The Uses-Hencky y ie ld  c r i te r ion  and 

its associated flow rule are adopted t o  describe the elast ic-plast ic  behavior 

of an i n i t i a l l y  homogeneous isotropic  material. The strain-hardening behavior 

is taken in to  account by using the mechanical sublayer model. The s t ra in-rate  

e f fec t  is approximated by assuming tha t  the uniaxial s t ress-s t ra in  re lat ion is 

affected by s t r a i n  rate, only by a quasi-steady increase i n  the yield stress 
above the s t a t i c - t e s t  yield stress. 

The spa t i a l  assumed-displacement finite-element (FE) approach is used to  

approximate the t r u e  i n f i n i t e  degree-of-freedom description of the actual con- 

tinuum by one which involves a f i n i t e  number of degrees of freedom. 

element concept is used i n  conjunction with the Principle of V i r t u a l  Work and 

D ' A l e m b e r t ' s  Principle t o  obtain the equations of motion of a general so l id  con- 

tinuum which is permitted t o  undergo large-deflection elast ic-plast ic  t ransient  

deformations. The resul t ing equations of motion are developed i n  two forms: 

(a) the conventional form, and (b) an improved form; the l a t t e r  represents a 
new development. In  both forms, the Lagrangian description for displacements, 

s t r a ins ,  and stresses is employed; t ha t  i s ,  the i n i t i a l  undefonned configuration 

The f in i t e -  
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of the continuum is used as a reference for the subsequent motion of the oontinu- 
um. 

order ordinary (coupled) nonlinear differential equations with the unknowns to 

be determined being the values of the degrees of freedom (generalized displace- 

ments) at the nodes of the finite-element assemblage which represents the con- 

tinuum. 

integration scheme with an appropriate temporal finite-difference approximation 

operator. 

The resulting equations of motion consist of a finite-size system of second 

This set of equations is solved timewise by using a direct numerical 

The formulation is developed in detail for a curved beamlike structure 

which undergoes planar deformations with: (a) zero transverse shear deformation 

(Bernoulli-Euler-type of deformation behavior) or (b) nonzero transverse shear 

deformation (Timoshenko-type of deformation behavior). The nonlinearities re- 

sulting from both large-deflections and elastic-plastic material behavior are 

included. 

For the Bernoulli-Euler-type of curved beam element, two sets of assumed 

displacement functions have been employed: (1) Loth the axial and the transverse 

displacements are represented by cubic order polynomials with small-amplitude 

rigid-body modes included (this is termed a CC element) and (2) the axial dis- 

placement is represented by a first-order polynomial while the transverse dis- 

placement is represented by a cubic-order polynomial, with small-amplitude 

rigid-body modes included (this is termed an LC element). 

As €or the Timoshenko-type of curved beam elements, four sets of assumed 

displacement functions each with various orders of polynomials to approximate 

the transverse displacement have been studied. 

An assessment of this method of analysis is made by means of a sequence 

of problems for beam and ring example structures which are subjected to transient 

mechanical loading or to initial impulsive loading; the present predictions are 

compared with reliable experimental data and/or independent predictions (finite- 

difference and/or analytical). The temporal central-difference finite-differ- 

ence operator is used for most of the calculations; however, the use of Houbolt's 

method and Newmark's method is also explored for the present nonlinear problems. 

The structural response predictions and evaluations were carried out in 
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the following categories: 

(a) Small-Deflection Linear-Elastic Transient Response 

(1) An impulsively-loaded simply-supported beam w a s  analyzed 

by the present FE method with the Bernoulli-Euler type of 

LC element and tk predictec! responses were i n  excellent 

agreement with the exact normal mode solution. This com- 

parison served principally t o  verify the correctness of 

the computer program. 

( 2 )  A free-free "thick" beam loaded by a t ransient  concentrated 

load a t  midspan was analyzed by using the several  types of 

Timoshenko-type f i n i t e  elements developed i n  this study. 

The present predictions were compared with the available 
exact modal solution. 

(b) Large-Deflection Elastic-Plastic Transient Response 

Included i n  th i s  category were the following impulsively-loaded 

structures:  (1) a clamped-clamped beam, ( 2 )  a r ing sector with 

clamped ends, and (3)  a f ree  ring. Transient response pre- 

dictions carr ied out by using the present finite-element ap- 
proach w e r e  compared with experimental measurements (of 

t ransient  s t r a ins  and large t ransient  deformations) and 

f i n i t e  difference predictions. 

The problem of engine rotor  fragments interacting with e i ther  a complete 

(containment) or  a p a r t i a l  (deflection) s t ruc tura l  r ing is discussed as an ex- 

ample application of the present analysis t o  a problem of current pract ical  in- 

terest. Energy and momentum considerations are  employed to  predict  the collision- 

induced veloci t ies  which are imparted t o  the coll iding fragment and t o  the af- 

fected r ing segment; the associated analysis method is termed the coll ision- 

imparted velocity method, CIVM. This col l is ion analysis is combined with tne FE 

analysis developed i n  t h i s  study t o  permit one t o  predict  the result ing large 

deformation responses of containment/deflection rings. 

experimental data are a l so  given. 

Comparisons with limited 

170 



7.2 Conclusions 

A spa t i a l  assumed-displacement finite-element var ia t ional  formulation 

and solution scheme fo r  the prediction of large-deflection elast ic-plast ic  

t ransient  responses of curved beamlike s t ructures  has been developed and has 

been implemented i n  a computer program; both the older conventional FE formu- 

la t ion  and a =improved FE formulation fo r  analyzing t h i s  class of problems 

have been developed and discussed. The accuracy and ve r sa t i l i t y  of these FE 

meth0dS of analysis have been demonstrated on problems for  bean and ring ex- 

ample s t ructures  which are subjected t o  t ransient  mechanical loading or  t o  

i n i t i a l  impulsive loading. The present finite-element-predicted responses are 

found t o  be i n  reasonably good agreement with experimental measurements and/or 

with independent predictions (finite-difference ana/or analyt ical) .  Also, tne 

present finite-element analysis combined with the impact analysis has been 

applied to  the prediction of containment/deflection s t ruc tura l  r ing responses 

to  engine rotor  fragment impact; the predicted ring responses agree favorably 

with experiment, 

On the basis  of the present study, the following conclusions may be 

stated: 

(1) The improved finite-element formulation is more e f f i c i en t  and 

economical fo r  computing the large-deflection elast ic-plast ic  

t ransient  responses of simple s t ructures  than the conventional 

finite-element formulation. 

(2) The 3-point central-difference time integration method gives 

very accurate amplitude and phase t ransient  predictions as 

long as the time increment s i ze  used is small enough. The 

la rges t  permissible time increment s i z e  A t  which w i l l  avoid 

calculation in s t ab i l i t y  is affected by the severity of the 

s t ruc tura l  responses; t ha t  is, large-deflections play the  

key ro le  i n  s t i f fen ing  the s t ructure  and thus requiring a 
smaller A t  than tha t  required fo r  small deflection t ransient  

response problems t o  avoid numerical ins tab i l i ty .  Also, the 

large-deflection e f fec ts  render HoUbolt'S method and Newmark's 

method no longer "unconditionally stable" as they are fo r  
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small-deflection problems. 

observations in Ftef. 75. 

This is consistent with the 

(3) The Bernoulli-Euler-type of curved beam element with CC 

assumed-displacement functions exhibits significantly im- 
proved predictions, especially for the strain, over the 

Bernoulli-Euler-type of curved beam element with LC 

assumed-displacement functions for a given number of de- 

grees of freedom. Also, the former converges very rapidly, 

but at the expense of a smaller allowable time increment 

step size compared with the latter. 

The Timoshenko-type of beam element with linearly-varying 

assumed-displacement functions (Tl) can provide accurate 

small-displacement linear-elastic transient response pre- 

dictions only if the element size is kept small enough. 

However, in order to obtain more accurate coarse-mesh 

solutions, one would need to employ assumed displacement poly- 

nomial functions of higher order. Better and more efficient solu- 

tions, however, are obtained by using T2, T3, or T4 elements, with 
the T4 type of element being the best. Unfortunately, however, 

pertinent experimental and/or predicted results for large- 

deflection, elastic-plastic transient responses with im- 

portant transverse shear deformation behavior against which 

to compare predictions which could be readily accomplished 

with the present FE analysis have not been located. 

(4) 

(5) It is substantially more efficient to use the Lumped-mass 

matrix version (L) rather than the consistent-mass matrix 

version ( C )  of the finite-element method for typical tran- 

sient response problems of the present class; the allowable 

At is larger for the former than for the latter. Further, 

since the transient responses predicted by using the C and 

the L finiteelement calculation are quite close to each 

other, it is recommended that the lumped-mass (L) version 

of the finite-element method be selected as being more 
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e f f i c i en t  (and adequate) fo r  engineering prediction purposes. 

(6) For the present planar s t ructures ,  it has been demonstrated 

t h a t  the present PE method provides accurate predictions 

of t ransient  structural responses, both deformations and 

s t r a ins ,  fo r  s t r a ins  a t  least as large as  about 5 per cent. 

(It is reasonable t o  hope that reasonably accurate s t r a in  pre- 

dict ions w i l l  be provided by t h i s  method fo r  s t ra ins  as large 

perhaps as 20 per cent which approaches fracture  levels of 

s t r a i n  for  many common aerospace s t ruc tura l  materials.) 

(7) Based upon the l i m i t e d  comparative studies reported i n  
Subsection 5.3.7.3 between the f i n i t e  element and the 

f i n i t e  difference method, the lumped-mass improved- 

formulation finite-element m e t h o d  is competitive with 

the f i n i t e  difference method w i t h  respect t o  efficiency 

(computing time and cost)  and accuracy for  predicting 

large-deflection elast ic-plast ic  t ransient  responses of 

simple structures.  

me use of the present approximate CIVM approach 

(Section 61, i n  conjunction w i t h  e i t he r  the present f in i te -  

element procedure or the finite-difference method provides 

reasonable estimates of the fragment and r ing responses 

a r i s ing  from single-blade-fragment impact upon a struc- 

tural ring. 

cut” CIVM analysis could be remedied readi ly  by further 

work, and would clear ly  lead t o  improved qual i ta t ive and 

quant i ta t ive predictions. 

(8) 

Several deficiencies i n  the present “ f i r s t -  

7.3 Suggestions for  Further Study 

Possible areas of interest ing and useful fur ther  research along the 

l i nes  of the present investigation are described i n  the following. 

Although one can always resor t  t o  numerical experimentation to provide 

a sui table  time increment step s i z e  t o  insure s t a b i l i t y ,  it would be desirable 

t o  develop c r i t e r i a ’ f o r  the maximum allowable time increment s tep  fo r  the large- 

deflection nonlinear s t ruc tura l  t ransient  response problems of the present type; 

a useful beginning for  this type of ana lys i s  is described i n  Chapteg 3 of 
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Ref. 186. Also, before more definite conclusions can be drawn as to whether any 

one timewise operator is superior to the others, more extensive studies than 

could be carried out here are required. 

Pertinent theoretical and/or experimental results for large-deflection 

elastic-plastic transient responses of beamlike structure having significantly 

large transverse-shear deformations have not been found €or checking the present 

Timoshenko-type of finite element; the evaluation of the present Thshenko- 

type element for this kind of problem, therefore, remains to be accomplished. 

The present-developed finite-element analysis method for predicting 

large-deflection elastic-plastic transient structural responses is quite gen- 

eral and pertains to any type of loaded body. However, in this report, its 

application is demonstrated only for simple (curved and/or straight) beamlike 

structures whose significant deformations are confined to one plane. 

tension and application of the present method to analyze plate and shell struc- 

tures or to structures with complicated geometric shape, material properties, 

and boundaq conditions would be of considerable interest and value, and would 

provide useful versatility to permit analyzing this group of nonlinear three- 

dimensional-deformation transient-response problems -- which comprises the 
largest group of practical-interest problems of this type. Although there 

are many ways of constructing a lumpedlnass matrix (frbi. finite-difference 

equations, for example) there needs to be developed for these general dynamic 

systems, better rational ways of constructing the lumped mass matrix. 

An ex- 

More definite conclusions need to be drawn as to which of the two gen- 

eral methods the finite-difference or the finite-element method will prove to 

be superior for particular types of problems in this nonlinear transient re- 
sponse category. 

Further, the combining of the finite-difference and the finite-element 

procedures in space to take maximum advantage of the special merits of each 

method for appropriate parts of the structure (that is, one might use the 
finite-difference procedure for smoothly-varying regions of the structure and 

the finite-element procedure in regions of structural irregularities) is also 

suggested for further research. 
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Finally, as noted in Subsection 6.4, the extension of the present 

collision-imparted velocity method to perform a more physically-realistic 
analysis (for example, to account for the roughness of the ring-fragment 

impact surfaces, the deformations of the fragment, etc., and to analyze con- 

tainment/deflection devices which are subjected to more canplicated fragment 

impact and/or conditions) would be a useful variant of this collision-imparted- 
velocity method of analysis. 
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TABLE 1 

DATA CHARACTERIZING N A P E  RING TESTS 88 and 91 

Ring D a t a  

Outside D i a m e t e r  ( in)  
Radial Thickness ( in)  

Axial Length ( in)  
Material 

Elas t ic  Modulus E (psi)  

PP Yield S t ress  U (psi)  
0 

Fragment Data 

Type 
Material 

Outer Radius ( in)  
Fragment Centroid from C e n t e r  of 

Rotation ( in)  

Fragment Tip Clearance from Ring ( in)  

Fragment Length ( in)  

Fragment Length from CG t o  Tip ( in)  

Fragment Weight ( lbs  1 
Fragment Moment of I n e r t i a  about its 

CG ( in  l b  sac2) 

Fai lure  Speed (RPM) 

Fragment Tip Velocity (ips) 

Fragment Centroidal Velocity (ips) 

Test  88 

17.619 

0.153 

1.506 

2024-T4 Aluminum 

lo7 
50,000 

T-58 Single Blade 

SEL-15 

7.0 

4.812 

1,657 

3.5 

2.188 

0.084 

2. 1 6 3 ~ 1 0 - ~  

15,374.3 

11,270. 

7,748. 

Fragment I n i t i a l  Angular Velocity (rad/sec) 1,610. 

Fragment Translation KE ( i n  lb) 6,525. 

Fragment Rotational KE ( i n  lb) 280.4 

T e s t  91 

17.619 

0.152 

1.506 

2024-T4 

l o 7  
50,000 

T-58 Single Blade 

SEL-15 

7.0 

4.812 

1.658 

3.5 

2.188 

0.084 

2 .163~10-~  

15,644.4 

11,467. 

7,884. 

1,638.3 

6,756. 

290.3 
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TAII 
Wet) 

Pre-Impact 

0 

16 

23 

27 

35 

36 

44 

45 

50 

61 

71 

72 

79 

85 

141 

144 

168 

188 

189 

198 

178 

210 

215 

222 

246 

255 

TABLE 4 

BLADE MOTION AND IMPACT DATA FOR CASE CR-SB(EL-PP) 
VS. CASE C R - n  (EL-PP-SR) 

Case CR-5B 
(ELPP 1 

Y f w vz 4NI v 
( i n / s e c )  ( i n / s e c )  (rad7sec) 

0 -7748. 0 +1610.0 

1 -6786.9 -1125.3 +2249.9 

2 -6604.2 -1267.7 +2266.5 

5 -6332.4 -1476.1 +2289.4 

7 -6216.2 -1561.6 +2297.3 

LO -6018.5 -1702.0 +2308.1 

11 -5871.2 -1802.6 +2314.3 
-- -- -- -- 
14 -5614.4 -1970.0 +2322.0 

15 -5457-2 -2068.6 +2325.7 

17 -5300.2 -2164.0 +2329.4 

19 -4934.2 -2377.3 +2343.9 

-- -- -- -- 
21 -4781.7 -2463.1 +2360.5 
-- -- -- -- 
22 -4449.1 -2581.8 +2370.7 

25 -3827.3 -2786.4 +2391.7 

28 -3724.7 -2815.7 +2396.5 
-- -- -- -- 
32 -3569.7 -2857.8 +2405.6 

35 -3459.5 -2886.0 +2414.6 

42 -3353.0 -2911.6 +2426.9 
-- -- -- -- 
45 -3305.6 -2922.4 +2434.5 

53 -3233.8 -2937.9 +2450.2 

58 -3213.0 -2942.2 +2456.3 

Case CR-7B 
f EL-PP-SR) 

f w vz V 
Y 

( i n / s e c )  ( i n / s e c )  ( r a d / s e c )  

-7748.0 0 +1610.0 

-6786.9 -1125.3 +2249,9 

-6523.8 -1330.4 +2273,9 

-6231.8 -1551.7 +2297.3 

-6099.5 -1647.6 +2305.8 

-5893.0 -1792.2 +2316.9 

-5877.9 -1802.6 +2317.6 

-5599.2 -1989.5 +2330.3 
--- -- -- 

-5452.6 -2084.6 +2336.9 

-5132.4 -2285.5 +2354.6 
-- -- -- 

-4933.6 -2406.7 +2373.7 

-4894.9 -2430.2 +23ao.o 
-- -- -- 

-3967.9 -2765.6 +2406.8 
-- -- -- 
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TABLE 4 (CONCLUDED) 

TAII 
(usec) 

264 

273 

274 

298 

307 

310 

316 

326 

327 

335 

345 

347 

34a 

818 

Case CR-SB 
(EL-PP ) 

ANI  

61 

63 
-- 
65 

71 
-- 
76 

a0 

81 

84 

87 

88 

a9 
8 ,  

I. 

11 

89 

V 
Y 

(in/sec) 

-3199.8 

-3032.1 
-- 

-2951.6 

-2888.0 
-- 

-2841. a 
-2816.8 

-2812.7 

-2802.0 

-2794.9 

-2794.5 

-2791.0 
I. 

I 

I. 

-2791.0 

vz 
(in/sec ) 

-2944.8 

-2971.7 
-- 

-2982 e 0 

-2989.6 
-- 

-2994.6 

-2997.1 

-2997.5 

-2998.5 

-2999.1 

-2999.1 

-2999.4 
,I 

I, 

I, 

-2999.4 

f 
( rad/sec 

w 

+2460. a 
+2513.3 

-- 
+2543.2 

+2567.9 
-- 

+2587.4 

+2598. 7 

+2600.6 

+2605.8 

+2609.5 

+2609,8 

+2611.7 

II 

I 8  

+2611.7 

ANI 

ANI 

-- 
-- 
32 

39 
-- 
42 

43 

46 

47 
, 
I, 

I. 

I, 

I. 

I. 

I. 

47 

C a s e  CR-7B 
(EL-PP-SR) 

Y vz V 

(in/sec) (in/sec) 

-- 
-3110.8 

-2996.9 
-- 

-2941.6 

-2939.2 

-2922.5 

-2912.0 
11 

1, 

-- 
-2966.9 

-2982.2 
-- 

-2988.9 

-2989.2 

-2991.0 

-2991.3 
*I 

,, 

I I 

I ,I 

I. I, 

-2912.0 -2991.3 

f (r! 

(rad/sec) . 
-- 
-- 

+2544.9 

+2587.6 
-- 

+2611.1 

+2612.2 

+2620.2 

+2621.5 
I, 

I, 

, 
,I 

,I 

1. 

+2621.5 
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FIG.1 NOMENCLATUm FOR SPACE COORDINATES AND DEFORMATION . 
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DEFORMED ELEMENT 

f Y' 

il' z - EULERIAN STRESS TENSOR s "I -KIRCHHOFF STRESS TENSOR 

FIG.2 NOMENCLATURE FOR STRESS TENSORS 

li. 
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---, 
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A,"-AREA OF PRESCRIBED 

A,;AREA ON WHICH LOADS 

DISPLACEMENTS 

ARE PRESCRIBED 

F I G . 3  NOMENCLATURE FOR A POSSIBLE F I N I T E  EWEMEN" REPRESENTATION OF 
A GENERAL TWO-DIMENSIONAL STRUCTURE 
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Evaluate the Generalized 
Nodal Force {F*It by 

0 

Form the Mass Matrix for the Entire 
Structure, [MI, by Assembling the 

Element Mass Matrix [m]. 
Impose B.C. on [I.I].Then, Factorize 

[MI into [L] [LIT 

--Assembling the Element 
Nodal Forces {f It 
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I I Evaluate {As*) 

Evaluate (S 
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I 

(b) Conventional Method 

FIG. 4 CONCLUDED 
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Structure [MI, by Assembling the 
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the Entire Structure by Assembling 
the Element St i f fness  Matrix [k] . 
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- ELEMENT NODE 

Y 

NUMBER 

F I G . 5  NOMENCLATURE FOR GEOMETRY,COORDINATES,AND DISPLACEMENTS OF 
A CUWF,D-BEAM F I N I T E  ELEMENT 

I 
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2E(t) 

w h e r e  

As = effective shear carrying area of beam cross section 

w = transverse deflection 

M = bending moment 

S = transverse shear force 

FIG. 7 GEOMETRY AND NONDIMENSIONAL QUANTITIES FOR A FREE-FRGE 
BEAM SUBJECTED TO AN APPLIED CONCENTRATED TRANSIENT 
LOAD AT ITS MIDSPAN 
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0 MODAL SOLUTION (REF. 165) 

NO. OF ELEMENTS NO. OF DEGREES 
PER HALF SPAN OF FREEDOM (DOF) 

7 15  - - - -  

(a) T 1  (Timoshenko-Type F E  Solutions) 

0 MODAL SOLUTION (REF. 1 6 5 )  

NO. OF ELEMENTS 
PER HALF SPAN DOF 

5 16 - - -  - 

b 
--IN 

11 I O  
1*I\ 
v 

1V-l 

--5 

(b) T2 (TiraOshenko-Type F E  Solutions) 

F I G . 8  TRANSVERSE SXEAR RESPONSES OF THE MECHANICALLY WADED SMALL-DEFLECTION 
LINEAR-ELASTIC FREE-FREE BEAM 
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0 MODAL SOLUTION (REF. 165) 

NO. OF ELEMEWl?S 
PER IIW" SPAN W F  

3 13 --- - - .5  + 
*I 

-IN 
I I  
w 
b .o 

I v ,  

Y 

0 

-*5 t (c) T3 (Timoshenko-Type FE SOlUtiOnS) 

0 MODAL SOLUTION (REP. 165) 

(d) T4 (Timoshenko-Type FE Solutions) 

FIG.8 CONCLUDED 
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II 
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c- 
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- * I  

-. 2 

(a) T1 (Timoshenko-Type FE Solutions) 

n 

FIG. 9 

V (b) T2 (Tknoshenko-Type FE Solutions) 

MOMENT RESPONSES OF THE MECHANICALLY LOADED SMALL-DEFLECTION 
LINEAR-ELASTIC FREE-FREE BEAM 
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FIG.9 CONCLUDED 
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.O6 

F . .04 
0 

I f  
w 
u 

IS 

.q 

- 

- 

I 

NO. OF ELEMENTS M3F 
PER w SPAN 

7 15 - - - - -  -- 

(a) T1 (Timoshenko-Type FE Solutions) 

/ NO. OF ELEMEKTS wF 
PER HALE' SPAN 

5 16 
7 22 

----- 

(b) T2 (Timoshenko-Type FE Solutions) 

f I I I I 

.o . 2  -6 .8 1.0 2- 4 * .ool 
FIG.10 TRANSVERSE DEFLECTION RESPONSES OF THE MECHANICALLY LOADED 

SMhLL-DEFLECTION LINEAR-ELASTIC FREE-FREE BEAM 
212 



.06- 

PER wLI;p SPAN n 

3 13 - - -- - 
I1 
w 

(c )  T3 (Timoshenko-Type E% Solutions) 

b z 

PER HALP SPAN DOF 

5 16 --- -- 

(d) T4 (Timoshenko-Type FE Solutions) 

FIG.10 CONCLUDED 
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Bernoulli-Euler- - 
v v  Type Element 

4 = 5000 in/sec 

Density = 0.25 x 10 (lb-sec ) / i n  -3 2 4  

Radius = 2.935 in .  W W 

2 4  J, J, Density = 0.25 x (lb-sec ) / i n  
6 EL-SH: E = 10.5~10 psi ,  Uo = 42800 psi 

V 'rlv 'n Timoshenko-Type 
Element 
(Linear 1 

V 

W W 

1 E2 = 78700 psi ,  G = (3/8)E psi 

&SR: D = 6500 sec-l P = 4  e e 

- 
= 41400 psi Timoshenko-Type 6 

G = (3/8)E p s i  Element v v  ' Qo 
EL-PP: E 10.4 x 10 psi  

w w  
8 8  SR: D = 6500 sec-l, p = 4 (Linear) 

(a) Clamped Beam 

w = 4862 in/sec 
0 

0 0.123 
UT 

1.197 in .  

Bernoulli-Euler- 
Type Element 

(LC) 
i n .  

(CC) 

- 
V V 

W W 

9 * 
n 
V V 

(b) Clamped Ring 

h = 6853 in/sec . 
Bernoulli-Euler- 

-1 0.124 in .  Type Element - 
V V 

W W 
1.195 in .  

(CC) 

* * 
ri V I  V I  - ri 

Radius = 2.937 in .  

Density = 0.25 x 10 (lb/sec ) / i n  -3 2 4  

V V 

W W 
(LC) 

6 

E2 = 78700 psi1 
SR: D = 6500 sec , p = 4 

EL-SH: El =: 10.5 x 10 psi ,  (J = 42800 p s i  
0 

9 * 
(cl Free Ring 

FIG.  11 TEST STUDIES OF LARGE-DEE'LECIX.ON ELASTIC-PLASTIC TRANSIENT 
RESPONSES OF IMPULSIVELY-LOADED SIMPLE STRUCTURES 

214 



6 -  

5 '  

4 

3 

2 

+ 
PURE BENDING 
(NEGLECTING RDTATORY INERTIA =Em) i p 
UPPER BOUND (REF. 162) 

LOWER BOUND (REF. 162) 

i 

NUMBER OF ELEMENTS PER HALF SPAN 

(b) 'Bounds of u- For Pure Bending Behavior 

FIG.  12 CONCLUDED 

216 



- 

A PUREMEMBRANE 

v PURE BENDING 
(INCLUDING ROTATORY INERTIA EFFECT) 

a PURE BENDING 
(NEGLECTING F!DI?ATORY INERTIA EFFECT) 

- 0 COMBINED MEMBRANE AND BENDING 

2 4 6 8 10 I2 14 
NUMBER OF ELEMENTS PER HALF SPAN 

(a) The Maximum N a t u r a l  Frequency 
F I G . 1 2  MAXIMUM NATURAL FREQUENCIES FOR SMALL VIBRATIONS OF 

THE CLAMPED BEAM 

215 



- ~ - -  

I l '  

217 



V 
al 
ID 

co 

I 
+, 
4 

a 

I 

I 

I 
I 
I 
I 

218 



I 
I 
1 
1 
I 

I 
I 

I 
I 
1 
I 
I 
I 
I 
I 

I 
I 
I 

I 

\ 
\ 

I 
\ 
I 

I 

I 
1 

219 



( ‘NI) N O I J 3 3 ‘ I n a  NVdSCIM 

220 



2 .  w a 

221 



\ 

\ 

I 



223 



I I I I I 

224 



B i 
P 

I 
I a 

225 



- 
( c )  Outer Surface Strain Responses 
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(a) Complete Ring for Containment 

HINGE PIN 

(b) Partial Ring as a Deflection Device 

F I G .  36 SCHEMATICS OF THE FRAGMENT CONTAINMENT AND FRAGMENT DEFLEC- 
TION PROBLEMS 
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FIG. 37 SCHEMATICS OF SOME TYPES OF FAILED-ROTOR FaGMENTS 
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Uf represents only the component of fragment-c.g. velocity w h i c h  
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of the ring segment nodal velocities. 

FIG. 39 SCHEMATICS OF EWiGMWT -RING COLLISION MODEIS 
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(b) Smooth kiinge Support 

(c) Hinge-Restrained w i t 1  E l a s t i c  Foundation 

y ,v 
(d) Point: E las t i ca l ly  Restrained plus Elastic Foundation 

FIG. 42 SCHEXATICS FOR FREE AtJD RESTRAINED PARTIAL RINGS 

262 



0 

V 

a 4 

263 



d + 
-n 

JJ 

I 
u 

? 
N I 
? 
N A 

4 
I 
4 

3, * 

CI 

8 
4J 
Q, 

? * 

U" 

I 
JJ 

4 + -n 

d 

4 
3 
Y 

I 
d + 
n 
.rl 

n 

B Z  

(Y 

4l 
U 
4 
P) 
J4 

2 
3 : .  

m 
w 

s a 

264 
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(b) Ring Quadrant- (Deflection Device) 

FIG. 45 SCHEMATICS OF EXAMPLE PROBLEMS ANALYZED BY THE CIVM APPROACH 



CONSISTENT MASS COLLISION MODEL 
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PREDICTIONS FOR e = 1 AND AN EL-PP RING 

0 ----- CM WITH 5-5-5-5 DISCRFZIZATION (CR-1B) 

A --- CM WITH 9-6-6-6 DISCRETIZATION (CR-3B) 

o-- ~ WITH 10-6-6-6 DISCRETIZATION (CR-58) 

RING AT t - 0 

0 

L-IO 

(a) t = 570 psec 

F I G .  48 COMPARISON OF CM W I T H  LM COLLISION MODEL PREDICTIONS FOR 
THE COMPLETE FREE RING SUBJECTED TO SINGLE-BLADE IMPACT 
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PREDICTIONS FOR e = 1 AND AN EL-PP RING 

III ----- CM WITH 5-5-55 ~rscReTrzxrxm (CR-IB) 

A - * -  CM WITH 9-6-6-6 DISCRETIZATION (CR-33) 
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FIG.50 EFFECT OF THE COEFFICIENT OF RESTITUTION ON THE ACCUMULATED 
NUMBER OF IMPACTS OF A BLADE-IMPACTED FREE COMPLETE RING 
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0 - * -  EXPERIMENT 
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RING BEFORE INITIAL IMPACT 
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- I  0 

(a) Time after Initial Impact (TAII)  = 150 Wee 

FIG. 51 COMPAIUSON OF PREDICTIONS W I T H  EXPERIMENT FOR THE FREE COMPLETE 
RING SUBJECTED TO SINGLE-BLADE IMPACT IN NAPTC TEST 88 
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EXPERIMENT 

CASE eR-5B (EL-PP, e = 1) 

0 - - -  
)( ------ 

A -- CASE cR-7B (EL-PP-SR, e = 1) 

RING EEFORF, INITIAL IMPACT 
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(b) TAIX = 570 usec 
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EXPERIMENT 

CASE CR-SB (EL-PP, e = 1) 

CASE CR-7B (EL-PP-SR, e 1) 

RING BEFORE I N I T I A L  IMPACT 
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L -10 

( c )  TAII = 810 p s e c  

FIG. 51 CONCLUDED 
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o--- EXPERIMENT 

% ----- CASE CR-218 (EL-PP-SR, e - 0 )  

A -- CASE CR-1OB (EL-PP-SR, e = I )  

RING BEFORE INITIAL IMPACT 

I I 

-6 -4 -2 

2 ‘b 

-2 

(a) TAII - 150 usec 

FIG. 52 COMPARISON OF PREDICTIONS WITH EXPERIMENT FOR THE FREE COKPLETE 
RING SUBJECTED TO SI--BLADE IMPACT I N  NAPTC TEST 91 
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0 --- EXPERIMENT 

x ---- W E  CR-11B (EL-PP-SR, e = 0 )  

A -- CASE CR-LOB (EL-PP-SR, e = 1) 

RING BEFORE INITIAL IMPACT 

10 IN. 
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PIG. 52 CONTINUED 
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EXPERIHENT o - - -  

x - - - -  CASE C R - l l s  (EL-PP-SR, e - 0 )  

A-- CASE CR-1OB (EL-PP-SR, e = 1) 

- RING BEFORE I N I T I A L  IMPACT 

- I  IN.  
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0 --- EXPERIMEW (WITH REVISED I N I T I A L  IMPACT INSTANT) 

4- -  CASE CR-LOB (EL-PP-SR, e = 1) 

RING BEFORE I N I T I A L  IMPACT 

IN. 

L-io 

(a) TAXI = 570 usec 

FXG. 53 COMPARXSON OF PREDICTIONS WITH EXPERIMENT POR THE FREE CQMPZETE 
RING SUBJECTED TO SINGLE-BLADE IMPACT IN NAPTC TESC 91, WITH A 
REVISED INSTANT OF INITIAL IMPACT 
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0 --- EXPERIMENT (WITH REVISEI) INITIAL IMPACT LNSTZWT) 
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A -  IC END CASE RQ-5B 

0 -- IUNGED END CASE Q-aB 

f 

f 
= 1610 RAD/SEC 

(a) Time t = 750 psec 

1 N . I O -  %-'--? -4-- I 2 "-0 
(b) t - 960 usec 

FIG.  54 COMPARISON OF THE RESPONSES OF RING QUADFUWTS WITII IDEALLY- 
CLAMPED AND SMOOTH-HINGED ENDS TO SINGLE-BLAIIE IMPACT 
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FIG. 55 ILLUSTRATION OF THE RESPONSE OF A QUADRANT RING SMOOTHLY 
HINGED AT 8 = 27O TO SINGLE-BLADE IMPACT 
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APPENDIX A 

DESCRIPTION OF THE MECHANICAL SUBLAYER MODEL 
STRAIN-RATE SENSITIVE MATERIAL 

FOR STRAIN-HARDENING , 
BEHAVIOR 

As discussed i n  Subsection 2.3.2, the yield surface of cer ta in  materi- 
The als w i l l  change i n  case of continued straining beyond the i n i t i a l  yield. 

change of the yield surface tha t  characterizes the strain-hardening behavior 

of the material depends on the loading history. I n  the present analysis, the 

strain-hardening behavior of the material is accounted fo r  by using the 

"mechanical sublayer m o d e l "  (Ref. 20, 21, 46, and 48). I n  order t ha t  the 

present report be reasonably self-contained, the mechanical sublayer model is 

described i n  t h i s  appendix. 

In  the mechanical sublayer model, the uniaxial tension (or compression) 

test stress-strain curve of the material is f i r s t  approximated by (n+l) piece- 

wise-linear segments which are defined a t  coordinates [(ak, Ek), k = 1, 2 ,  ... n l ,  

as depicted i n  Fig. A . l a .  Next, the material is envisioned as consisting, a t  any 

point i n  the material, of n equally-strained "sublayers 'I of e l a s t i c ,  perfectly- 

p l a s t i c  material, with each sublayer having the same elastic modulus E, but an 

appropriately different  yield stress (see Fig. A.lb). For example, the yield 

stress of the kth sublayer is 

Then, the stress value, Uk, associated with the kth sublayer can be defined 

uniquely by the s t r a i n  hiktory and the value of s t r a i n  and strain-rate p r e s d t  

a t  that point. Taken collectively with an appropriate weighting factor Ck for 

each sublayer, the stress, U, a t  t h a t  point corresponding t o  s t r a i n  E m y  be 

expressed as 
n 

(A. 2 )  

w h e r e  tile weighting factor 

be 

r z  
' k  

Ck fo r  the kth sublayer may readily be confirmed to 
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The e l a s t i c  perfectly-plastic and l inear strain-hardening constitutive rela- 

t ion may be treated as special cases. I n  the case of elastic perfectly- 

p l a s t i c  behavior, there is only one sublayer, and i n  the case of l inear  strain- 

hardening material there are two sublayers and the yield l i m i t  of the second 

sublayer is taken sufficiently high so t ha t  the deformation i n  tha t  sublayer 

renains e last ic .  

From the computational point of view, the use of the mechanical sub- 

layer nodel is very convenient to analyze problerrs with general loading paths 

including loading , unloading, reloading , and cyclic loading. Its features 

include the "kinematic hardening rule" which takes the Baushinger effect  into 

account (see Fig. A.lc). Also, t h i s  mechanical sublayer model may readily 

accommodate the strain-rate effect .  Figure A.2a i l l u s t r a t e s  schematically the 

uniaxial stress-strain behavior for a strain-rate aependent, e l a s t i c ,  perfectly- 

p l a s t i c  material whose rate dependence is described by Eq. 2.87, 

(2.87) 

w h i l e  Fig. A.2b depicts the corresponding behavior for  a strain-hardening ma- 

terial which is represented by the mechanical sublayer model, each sublayer of 

which has the same values for  the strain-rate constants D and p. For t h i s  

special type of rate-dependent strain-harde-dng material , the stress-strain 

curve a t  a given s t r a i n  rate i is simply a constant magnification of the s t a t i c  

stress-strain curves along rays emanating from the origin. Hcwever, fo r  strain- 

hardening material whose strain-rate behavior is not one of simple magnifica- 

tion, the strain-rate bchavior can often be approximated adequately by employ- 

ing appropriately different  values of D and p fo r  each sublayer; the result ing 

behavior is shown schematically i n  Pig. A.2c. 

One may generalize t h i s  uniaxial behavior to the two- or three- 

dimensional stress case by adopting, f o r  example, the Mises-Hencky yield con- 

dit ion,  E q .  2.79, and flow rule ,  E q .  2.82, and applying them to each Sublayer 
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of the mechanical sublayer model. The strain-rate dependence may also be gen- 

eralized by assuming that the E of the one-dimensional case may be replaced 

by the second invariant of the deviatoric strain-rate tensor as defined by 

(3.64) 

a In terms of the f in i te  increments Ay of s t r a i n  determined in  each 8 
timewise calculation step of the present procedure, the "replacement E" 

given by Eq. 3.64 becomes: 
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APPENDIX B 

DE3’INITION OF FINITE ELEMENT MATRICES INDICATED 
SYMBOLICULY I N  THE TEXT 

The various matrices which are used symbolically i n  Section 4 for an 
a r b i t r a r i l y  curved beam element are documented i n  t h i s  appendix,and the i r  

specialization to  represent simple c i r c u l a r  r ing  and s t r a i g h t  beam elements 

are also listed. 

B.1 Bernoulli-Euler Type Deformation Behavior 

B.1.1 Bernoulli-Euler Type Curved Beam Element with 

(4.24) 

(4.37a) 

(4.37a) 

* 
Equations not numbered with a prefix B refer to  pertinent equations i n  the  text. 
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In the following, the matrices [U(v)], [ A )  ,\LQJ, i =  1,2,3), [~+J,anci 

appearing i n  the above wpressions are l i s t e d  for an arbitrarily-curved [ 6 )  
beam element (see Fig. 5) : 
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where 
iii = mass per wait length of the beam element 
I = mass moment of i n e r t i a  of the  bean cross sect ion 
- 

Note that, i n  the above equations, only the matrix [ A  is given. I n  
pract ice ,  one forms its inverse , [A-‘1 , by means of available standard computer 

subroutines. Also note that subscr ipt  i ( or i+l ) is used to denote the  value 

of the  quant i t ies  a t  node i ( or  node i + l  1 .  

For application to simple c i rcu lar  r i ng  elements, the geometry and 
nomenclature of a typica l  c i r cu la r  r ing  element is shown i n  Fig. B.l where the  

local and global coordinates are arranged to take advantage of the  symmetry of 

the r ing  element’s geometry. TIX? matrices [ U ( ~ J ] ,  [ A ]  , ( LD~.J ,  i =  1, 2, 3 1, 
[r\l(?)] , ( m) ,and [ L J  for a simple c i r cu la r  r ing  element are listed i n  the 

following : 

[ A  I =  

cosA 

- S l N A  

0 
=A 

R 
c osA 
S l N A  

0 
-5 I nfA 

s 

WSh 

SlAA 

c OSA 

0 
-coy\ 

R 
-srNA 

COSA 

0 

R 
- COSA - 

s 
ZR I 

-s 1 ZR 

0 
‘7’ 
0 
S2 
7 
-s 

0 

0 

a 
s 
0 

sz 

0 

7’ 

- - s3 
82 

0 

3 s  
4 
0 

0 

+3 

3 5’ 
7 
0 

‘7‘ v 3 J  
0 0  
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[m J =[A-]' 

(B. 12) 
14-'1 

where  
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where,in ~ q s .  ~ . 1 3  and B.14 , rcI m = p , b h ,  1 = p 0 ~  bh3 , k , = E b h ,  a d  

= mass density per uni t  volume of the ;mileformed b e a m  

b =the w i d t h  of the beam 

h .--the thickness of the beam 
E =young’s modulus 

IA 1 
(B. 14) 
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B.1.2 Bernoulli-Euler Type Curved Beam Element with 

LC Assumed-Displacement Functions 

(B.15) 

(B.16) 

(B,17) 

(8.18) 

(B - 19) 
(B. 20) 

(B.21) 

(B. 22) 

(B. 23) 

In the folowing , a e  matrices [LJ (VI], [ A  J>( LQ J, A' = 1,2,3 [l\l(?j),and 

[e] appearing in the above expressions are listed for an arbitrarily-curved 
beam element ( see Fig. 5 1 : 
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(B. 28) 

(B.32) 
cn-'l 

(B -33) 

For application to a circular ring element ( see Fig. B . 1  ) ,  the matrices 

[ u(111, [ A  I >  ( L D ~ J ~  i 4 2 . 3 1  I ~ ( 7 1 3  Irn] 8 and r k ~  are l i s ted  i n  the 

following : 
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(B.40) 

301 



The corresponding quantities for a straight beam element (see Fig. B.2 ) 
I can be obtained by settin5 

equations. Thus, one obtains 
= 0, A =  0, and R&f =dy  i n  the preceding 

s 

(B. 42) 
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(B.44) 

(B.45) 

(B .46) 

(B.47) 

SYMMETRIC 

(B. 49) 

B.2 Timoshenko-Type Curved Beam Element 

For the Tbnoshenko-type curved beam element, only the element properties 

W i t h  the linear displacement interpolation functions are presented here. The 
element properties with higher or$er assumed displacement functions may be 
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derived in a similar manner as described in Subsection 4.4 . 

(4.58) 

(4.58) 

(4.58) 

(4.61a) 

(4.61a) 

In the following, the matrices [U(lJ J , [ A  J , ( ~9.1, i= I, 2 ,3 ,4 )  f1d(71), 
and (a) appearing in the above expressions are listed for an arbitrarily- 
curved beam element ( see Fig. 5 ) : 

cos+ zsSIN++ycos4 0 0 0 (4.54) 

O I  l o  0 Q ' 1  

c o s ?  SIN+ - Z c u S + + y S I M +  1 
[U?)] = '-Slhj 9 
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(B -51) 

(B .52) 

(8.53) 

(B .54) 

For application to a circular ring element ( see Fig. B.1 ) ,  the matrices 

[U(y ) ] ,  [ A ] >  ( ~ D i - 1 .  i = ! ,2 ,3 ,4 ) ,  [m] ,and I k )  are listed in the 
following: 
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For application to a straight beam element (see Fig. B .2 ) ,  the matrices 

[U(YJ], [ A I ,  ( L U ~ J ,  i =  l,Z,3,41, mir 4 [k] =e l is ted i n  the 
following: 

(B. 66) 
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r A-'J  
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Y 

F I G ,  B.l SIMPLE CIRCULAR RING ELEMENT 

F I G .  B.2 STRAIGHT BEAM ELEMENT 
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APPENDIX C 

M X E D  FINITE-ELEMENT MODEL BASED UPON REISSNER'S VARIATIONAL PRINCIPLE 

This appendix contains, for  the purpose of demonstrating the use of 

different variational principles, the formulation of the equation of motion 

based on a mixed finite-element model: (1) by assuming a displacement f i e ld  

which is continuous over the ent i re  sol id ,  (2) by assuming a stress f i e ld  for  

each individual element. However, no evaluation of t h i s  moael is  made. 

In  the Principle of Virtual Work, the independent quantity which is 

subject t o  variation is the displacement; i n  Reissner's variational principle, 

the independent quantit ies which are subject t o  variation are stress 

displacement. 

as follows (Ref. 159) : 

Reissner's variational principle may be s ta ted mathematically 

where 

work done i n  an arbimq& in f in i t& . -  
m a l  v i r tua l  stress 6s'' increment 

(C.2) / 

A o v  = portion of A over which the displacement v is prescribed 

Cijil = elastic compliance tensor 
0 i 

a n d i w  AII si? T:)$are defined as previously stated i n  Section 2 .  

I n  applying Eq. C.1 to the finite-element analysis fo r  a solid continu- 

um which is conceptually subdivided in to  N discrete elements, one can w r i t e  
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where the term C arises from a possible jump function of the derivative of 

v across the interelement boundaries. If the assunred displacement functions 

are such tha t  v. and vi 

then Cn = 0 (Ref. 7 ) .  

n 
i 

are continuous across the interelement boundaries, 
I ,j 

The assumed approximate stress interpolation functions which need not 

s a t i s fy  the equilibrium condition for  each individual element are expressed 

using a f i n i t e  number of independent parameters {a}: 

s'1'= ~f?,~'', I d )  (C. 5) 

and the displacements are approximated by interpolation functions IN] t o  

s a t i s fy  the interelement displacement and slope compatibility conditions 

anchored to  nodal generdized coordinates {q) : 

By applying Eq. C . 6 ,  Eq. C.3 becomes 

Using Eqs. C.5, (2.6, and C . 7 ,  and i f  the boundary displacement can be 

made t o  sa t i s fy  the prescribed value, E q .  C.4 may be expressed i n  the form 
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wnere the following quantities are evaluated for each finite element: 
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(C. 8e) 

The quantities {a) can be varied independently for each finite element; 
hence, from Eq. C.8 it may be concluded that 

or 

( C .  9a) 

and, hence, it follows from Eqs. C.9 and C.8 that 

It is seen that Eq. (2-10 is of the same form as Eq. 3.14 which is 

associated with the assumed-displacement type of finite-element model. Thus, 

transforming the element nodal displacements {q) to independent global dis- 

placements {q* 1 of the discrete-element assembly as described previously will 
lead to the same form of m a t r i x  expression as given by Eq. 3.17 which represents 

the "ioaproved formulation" form of the dynamic equilibrium equations: 

(C.11) 

However, it should be noted that the numerical values of the termS in [MI I {PI 

[HI, and IF*} of E q .  C.11 can be, in general, different from the corresponding 

symbolic quantities in J3q. 3.17. 

Given a set of initial conditions {q*),, {:*), and {F*), at time zero, 

and the proper boundary conditions, the system of second-order differential 

equations, Eq. C.ll, together with Eq. C.9 may be solved in a step-by-step 

thwise fashion. Let it be assumed that at a typical time instant t,. one 
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knows the generalized nodal displacement {q*) , the s t r a in  component {y. .I 
and the p l a s t i c  s t ra in  component {F. 1 

1 3  m 
element. 

be calculated from Eq. C.9, where {s} 
and C.8c, respectively. Having the stress parameter {a} a t  t i m e  t , one can 

calculate {p} and [h] f o r  each f i n i t e  element by using Eqs. C.8d and C.8e, 

respectively. Now, assemble this information for the discretized structure. 

Then Eq. C . 1 1  together with the use of a proper tinewise finite-difference 

operator t o  approximate { q }  

{q*} or the displacement increments {AS*} a t  the next time instant  twl, since 

a l l  quantit ies except {q* )  i n  Eq. C . l l  are known, and hence {e*} can be readily 

calculated. Having the displacements or  displacement increments a t  time t the 

s t r a i n  (or s t r a in  increment) a t  any s ta t ion i n  each element may be found from Eq. 

C.7. With the displacement and s t r a i n  available, the desired stress parameter a t  

time instant tm+l can be determined through the use of proper elastic-plastic con- 

s t i t u t ive  relations,  & Eqs. C.5 and C.9. Then %. C . l l  can furnish the displace- 

ments for the next time step. The process is cyclic thereafter. 

m AJ m' 
a t  any s ta t ion i n  each f i n i t e  

The stress parameter {a} for  each individual f i n i t e  element may 

can be evaluated from Eqs. C.8b 
m 

and {t} m m 

m 

m m 

can be employed to determine the displacements m 

m m 

m+l' 

It should be noted tha t  the application of the m i x e d  finite-eletnent model i n  

t h i s  form does not provide any particular advantage over the assumed-displace- 

ment finite-element model since the interelement boundary compatibility is 

still required. However, the use of the mixed finite-element model has its 

merit i n  the e l a s t i c  analysis of plates and shel ls  (Ref. 7 ) .  But for  the 

elastic-plastic analysis, the proper interaction (yielding) surface between 

stress and moment resultants has not been found; such information, however, would 

be needed i n  this mixed method. 

Finally, it can be expected that  assumed-stress finite-element models, 

such a s , the  assumed-stress hybrid model, the equilibrium model, e tc . ,  (Ref. 7) 

w i l l  not be as accurate as the assumed displacement finite-element model for 

elastic-piastic transient s t ructural  analyses, unless the time-step s ize  is  

made sufficiently s m a l l ,  since Lhe stress-strain curves fo r  many s t ructural  

materials are usual ly  very f l a t  i n  the p l a s t i c  range; thus, a s m a l l  e r ror  i n  

the s t r a in  will produce a small error  i n  the stress, but on the other hand, a 

s m a l l  error i n  the stress w i l l  r e su l t  i n  a much larger error  i n  the s t ra in .  
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